3,005 research outputs found
Cardiovascular Risk Factors Among People being Treated for HIV in Nepal: a Cross-Sectional Study.
Background: Human Immunodeficiency Virus (HIV) and antiretroviral therapy (ART) are found to be strongly associated with cardiovascular diseases. Data are sparse on the prevalence and distribution of cardiovascular risk factors among people being treated for HIV in South Asia region. Methods: A cross-sectional study of 103 HIV patients (51 women and 52 men) attending routine follow-up consultations at the largest ART centre in Nepal was conducted. Data on several cardiovascular risk factors were collected through interview questionnaires, biophysical measurements and consulting medical records. Results: The most common cardiovascular risk factors observed were central obesity [34.6%, 95% Confidence Interval (CI): 25.3% to 43.9%], chronic kidney disease [20.7% (95% CI: 11.6% to 29.7%)] and tachycardia [20.6% (95% CI: 12.7% to 28.5%)]. Females were significantly more likely to have central obesity (male 9.8% vs. female 60%, p=0.016) and chronic kidney disease (male 15.4% vs. female 26.3%, p=0.003) as compared to the males. Participants were fairly active but a large proportion, especially men, had smoked [65% (95% CI: 57%-72.3%)], used tobacco products [66% (95% CI: 56.4%-74.4%)] or drugs (53.8% of the men) and consumed alcohol [60.2% (95% CI: 50.5%-69.1%)]. Conclusion: A high prevalence of several cardiovascular risk factors was observed among patients being treated for HIV in Nepal. Further larger studies are warranted to better understand the relevance and public health impact of cardiovascular risk factors in this region
Critical Values for Yen’s Q3: Identification of Local Dependence in the Rasch model using Residual Correlations
The assumption of local independence is central to all IRT models. Violations can lead to inflated estimates of reliability and problems with construct validity. For the most widely used fit statistic Q3 there are currently no well-documented suggestions of the critical values which should be used to indicate local dependence, and for this reason a variety of arbitrary rules of thumb are used. In this study, we used an empirical data example and Monte Carlo simulation to investigate the different factors that can influence the null distribution of residual correlations, with the objective of proposing guidelines that researchers and practitioners can follow when making decisions about local dependence during scale development and validation. We propose that a parametric bootstrapping procedure should be implemented in each separate situation in order to obtain the critical value of local dependence applicable to the data set, and provide example critical values for a number of data structure situations. The results show that for the Q3 fit statistic no single critical value is appropriate for all situations, as the percentiles in the empirical null distribution are influenced by the number of items, the sample size, and the number of response categories. Furthermore, our results show that local dependence should be considered relative to the average observed residual correlation, rather than to a uniform value, as this results in more stable percentiles for the null distribution of an adjusted fit statistic
Drug-Resistant Tuberculosis--Current Dilemmas, Unanswered Questions, Challenges and Priority Needs
Tuberculosis was declared a global emergency by the World Health Organization (WHO) in 1993. Following the declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation and reveals an urgent need for commitment by national programs to health system improvement because the response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted activity and >12 years of MDR tuberculosis–specific activity, has the country response to the drug-resistant tuberculosis epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and prevention of DR tuberculosis are discussed
Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities
Tuberculosis is unique among the major infectious diseases in that it lacks accurate rapid point-of-care diagnostic tests. Failure to control the spread of tuberculosis is largely due to our inability to detect and treat all infectious cases of pulmonary tuberculosis in a timely fashion, allowing continued Mycobacterium tuberculosis transmission within communities. Currently recommended gold-standard diagnostic tests for tuberculosis are laboratory based, and multiple investigations may be necessary over a period of weeks or months before a diagnosis is made. Several new diagnostic tests have recently become available for detecting active tuberculosis disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. In the absence of effective prevention strategies, high rates of early case detection and subsequent cure are required for global tuberculosis control. Early case detection is dependent on test accuracy, accessibility, cost, and complexity, but also depends on the political will and funder investment to deliver optimal, sustainable care to those worst affected by the tuberculosis and human immunodeficiency virus epidemics. This review highlights unanswered questions, challenges, recent advances, unresolved operational and technical issues, needs, and opportunities related to tuberculosis diagnostics
Spectral signatures of photosynthesis I: Review of Earth organisms
Why do plants reflect in the green and have a 'red edge' in the red, and
should extrasolar photosynthesis be the same? We provide: 1) a brief review of
how photosynthesis works; 2) an overview of the diversity of photosynthetic
organisms, their light harvesting systems, and environmental ranges; 3) a
synthesis of photosynthetic surface spectral signatures; 4) evolutionary
rationales for photosynthetic surface reflectance spectra with regard to
utilization of photon energy and the planetary light environment. Given the
surface incident photon flux density spectrum and resonance transfer in light
harvesting, we propose some rules with regard to where photosynthetic pigments
will peak in absorbance: a) the wavelength of peak incident photon flux; b) the
longest available wavelength for core antenna or reaction center pigments; and
c) the shortest wavelengths within an atmospheric window for accessory
pigments. That plants absorb less green light may not be an inefficient legacy
of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200
Transiting Exoplanets with JWST
The era of exoplanet characterization is upon us. For a subset of exoplanets
-- the transiting planets -- physical properties can be measured, including
mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres
of a further subset of transiting planets, the hot Jupiters, is now routine
with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will
continue Spitzer's legacy with its large mirror size and precise thermal
stability. JWST is poised for the significant achievement of identifying
habitable planets around bright M through G stars--rocky planets lacking
extensive gas envelopes, with water vapor and signs of chemical disequilibrium
in their atmospheres. Favorable transiting planet systems, are, however,
anticipated to be rare and their atmosphere observations will require tens to
hundreds of hours of JWST time per planet. We review what is known about the
physical characteristics of transiting planets, summarize lessons learned from
Spitzer high-contrast exoplanet measurements, and give several examples of
potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade:
JWST and Concurrent Facilities, Astrophysics & Space Science Library,
Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht
(2008)." The original publication will be available at
http://www.springerlink.co
Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars
We present detailed stratigraphic and spectral analyses that focus on a region in
northern Sinus Meridiani located between 1°N to 5°N latitude and 3°W to 1°E longitude.
Several stratigraphically distinct units are defined and mapped using morphologic
expression, spectral properties, and superposition relationships. Previously unreported
exposures of hydrated sulfates and Fe/Mg smectites are identified using MRO CRISM and
MEX OMEGA near‐infrared (1.0 to 2.5 µm) spectral reflectance observations. Layered
deposits with monohydrated and polyhydrated sulfate spectral signatures that occur in
association with a northeast‐southwest trending valley are reexamined using highresolution
CRISM, HiRISE, and CTX images. Layers that are spectrally dominated by
monohydrated and polyhydrated sulfates are intercalated. The observed compositional
layering implies that multiple wetting events, brine recharge, or fluctuations in evaporation
rate occurred. We infer that these hydrated sulfate‐bearing layers were unconformably
deposited following the extensive erosion of preexisting layered sedimentary rocks and
may postdate the formation of the sulfate‐ and hematite‐bearing unit analyzed by the MER
Opportunity rover. Therefore, at least two episodes of deposition separated by an
unconformity occurred. Fe/Mg phyllosilicates are detected in units that predate the sulfateand
hematite‐bearing unit. The presence of Fe/Mg smectite in older units indicates that the
relatively low pH formation conditions inferred for the younger sulfate‐ and hematitebearing
unit are not representative of the aqueous geochemical environment that prevailed
during the formation and alteration of earlier materials. Sedimentary deposits indicative of
a complex aqueous history that evolved over time are preserved in Sinus Meridiani, Mars
Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration
Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx
Why do models overestimate surface ozone in the Southeast United States
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer
- …
