1,222 research outputs found

    Fermi-liquid based theory for the in-plane magnetic anisotropy in untwinned high-Tc_c superconductors

    Full text link
    Using a generalized RPA-type theory we calculate the in-plane anisotropy of the magnetic excitations in hole-doped high-TcT_c superconductors. Extending our earlier Fermi-liquid based studies on the resonance peak by inclusion of orthorhombicity we still find two-dimensional spin excitations, however, being strongly anisotropic. This reflects the underlying anisotropy of the hopping matrix elements and of the resultant superconducting gap function. We compare our calculations with new experimental data on {\it fully untwinned} YBa2Cu3O6.85{YBa}_2{Cu}_3{O}_{6.85} and find good agreement. Our results are in contrast to earlier interpretations on the in-plane anisotropy in terms of stripes (H. Mook {\it et al.}, Nature {\bf 404}, 729 (2000)), but reveal a conventional solution to this important problem.Comment: 5 pages, 6 figure

    Theory for ultrafast nonequilibrium dynamics in d-wave superconductors

    Full text link
    We use density-matrix theory to calculate the ultrafast dynamics of unconventional superconductors from a microscopic viewpoint. We calculate the time evolution of the optical conductivity as well as pump-probe spectra for a d-wave order parameter. Three regimes can be distinguished in the spectra. The Drude response at low photon energies is the only one of those which has been measured experimentally so far. At higher energies, we predict two more regimes: the pair-breaking peak, which is reduced as Cooper-pairs are broken up by the exciting pulse; and a suppression above the pair-breaking peak due to nonequilibrium quasiparticles. Furthermore, we consider the influence of the electron-phonon coupling, and derive rate equations which have been widely used so far.Comment: 4 pages, 4 figure

    Electronic Raman response in anisotropic metals

    Full text link
    Using a generalized response theory we derive the electronic Raman response function for metals with anisotropic relaxation rates. The calculations account for the long--range Coulomb interaction and treat the collision operator within a charge conserving relaxation time approximation. We extend earlier treatments to finite wavenumbers (∣q∣β‰ͺkF|{\bf q}|\ll k_{\rm F}) and incorporate inelastic electron--electron scattering besides elastic impurity scattering. Moreover we generalize the Lindhard density response function to the Raman case. Numerical results for the quasiparticle scattering rate and the Raman response function for cuprate superconductors are presented.Comment: 5 pages, 4figures. accepted in PRB (Brief Report), in pres

    Properties of the phonon-induced pairing interaction in YBa2_2Cu3_3O7_7 within the local density approximation

    Full text link
    The properties of the phonon-induced interaction between electrons are studied using the local density approximation (LDA). Restricting the electron momenta to the Fermi surface we find generally that this interaction has a pronounced peak for large momentum transfers and that the interband contributions between bonding and antibonding band are of the same magnitude as the intraband ones. Results are given for various symmetry averages of this interaction over the Fermi surface. In particular, we find that the dimensionless coupling constant in the d-wave channel Ξ»d\lambda^d, relevant for superconductivity, is only 0.022, i.e., even about ten times smaller than the small value of the s-wave channel. Similarly, the LDA contribution to the resistivity is about a factor 10 times smaller than the observed resistivity suggesting that phonons are not the important low-energy excitations in high-Tc_c oxides.Comment: 6 pages, 7 figure

    Unconventional superconductivity and magnetism in Sr2_2RuO4_4 and related materials

    Full text link
    We review the normal and superconducting state properties of the unconventional triplet superconductor Sr2_2RuO4_4 with an emphasis on the analysis of the magnetic susceptibility and the role played by strong electronic correlations. In particular, we show that the magnetic activity arises from the itinerant electrons in the Ru dd-orbitals and a strong magnetic anisotropy occurs (Ο‡+βˆ’<Ο‡zz\chi^{+-} < \chi^{zz}) due to spin-orbit coupling. The latter results mainly from different values of the gg-factor for the transverse and longitudinal components of the spin susceptibility (i.e. the matrix elements differ). Most importantly, this anisotropy and the presence of incommensurate antiferromagnetic and ferromagnetic fluctuations have strong consequences for the symmetry of the superconducting order parameter. In particular, reviewing spin fluctuation-induced Cooper-pairing scenario in application to Sr2_2RuO4_4 we show how p-wave Cooper-pairing with line nodes between neighboring RuO2_2-planes may occur. We also discuss the open issues in Sr2_2RuO4_4 like the influence of magnetic and non-magnetic impurities on the superconducting and normal state of Sr2_2RuO4_4. It is clear that the physics of triplet superconductivity in Sr2_2RuO4_4 is still far from being understood completely and remains to be analyzed more in more detail. It is of interest to apply the theory also to superconductivity in heavy-fermion systems exhibiting spin fluctuations.Comment: short review article. Annalen der Physik, vol. 13 (2004), to be publishe

    Exchange Enhancement of the Electron-Phonon Pair Interaction

    Full text link
    The critical temperature of high-TcT_c superconductors is determined, at least in part, by the electron-phonon coupling. We include the effect of an exchange interaction between the electrons and calculate the renormalization of the bare phonon frequencies and the electron-phonon verticies in a random phase approximation and obtain a strongly enhanced attractive phonon-induced electron-electron interaction. Using Fast Fourier Transform techniques, the weak-coupling selfconsistency equation for the order parameter is solved in the 2D first Brillouin zone for the Emery tight-binding band with different band fillings. The enhancement of TcT_c arises primarily from the softening of the phonon frequencies rather than the vertex renormalization.Comment: (2 pages, postscript file, hardcopies available from the authors
    • …
    corecore