93 research outputs found
Shear band dynamics from a mesoscopic modeling of plasticity
The ubiquitous appearance of regions of localized deformation (shear bands)
in different kinds of disordered materials under shear is studied in the
context of a mesoscopic model of plasticity. The model may or may not include
relaxational (aging) effects. In the absence of relaxational effects the model
displays a monotonously increasing dependence of stress on strain-rate, and
stationary shear bands do not occur. However, in start up experiments transient
(although long lived) shear bands occur, that widen without bound in time. I
investigate this transient effect in detail, reproducing and explaining a t^1/2
law for the thickness increase of the shear band that has been obtained in
atomistic numerical simulations. Relaxation produces a negative sloped region
in the stress vs. strain-rate curve that stabilizes the formation of shear
bands of a well defined width, which is a function of strain-rate. Simulations
at very low strain-rates reveal a non-trivial stick-slip dynamics of very thin
shear bands that has relevance in the study of seismic phenomena. In addition,
other non-stationary processes, such as stop-and-go, or strain-rate inversion
situations display a phenomenology that matches very well the results of recent
experimental studies.Comment: 10 pages, 10 figure
Comparison of thermo-hydraulic performance among different 3D printed periodic open cellular structures
As additive manufacturing of periodic open cellular structures (POCS) is gaining interest in structured catalytic reactor research, this work seeks to thermohydraulically compare the well-known Kelvin lattice structure with the lesser-researched BCC and gyroid lattice structures. Using a combined CFD (Computational Fluid Dynamic) and experimental approach, the selected POCS are fabricated through Laser Powder Bed Fusion (LPBF), characterized, and subsequently subjected to numerical analysis. From the manufacturability point of view, the 3D printed samples closely matched their CAD designs, showing a maximum porosity deviation of 15% below design values. A CFD model, validated through pressure drop experiment, was employed to compare the POCS designs on shared geometric attributes such as specific surface area and porosity. While all structures exhibited comparable performance in term of heat and momentum transfer, our findings suggest that the Gyroid lattice may provide the optimal balance between momentum and heat transfer rates in low-velocity region. Conversely, the BCC configuration may be more favourable at higher velocity. An Ergun-like correlation was also developed and validated for each lattice type, with a Mean Absolute Percentage Error (MAPE) below 10%. Our pressure drop results align quite well with existing literature correlations, showing a MAPE under 20%. Concerning heat transfer, the values forecasted in this research show a reasonable alignment with literature's results, though they tend to be on the lower spectrum.</p
LEĂN, JOSĂ CLAUDIO DE Y SRA. [Material grĂĄfico]
Copia digital. Madrid : Ministerio de EducaciĂłn, Cultura y Deporte, 201
Phenomenology and physical origin of shear-localization and shear-banding in complex fluids
We review and compare the phenomenological aspects and physical origin of
shear-localization and shear-banding in various material types, namely
emulsions, suspensions, colloids, granular materials and micellar systems. It
appears that shear-banding, which must be distinguished from the simple effect
of coexisting static-flowing regions in yield stress fluids, occurs in the form
of a progressive evolution of the local viscosity towards two significantly
different values in two adjoining regions of the fluids in which the stress
takes slightly different values. This suggests that from a global point of view
shear-banding in these systems has a common physical origin: two physical
phenomena (for example, in colloids, destructuration due to flow and
restructuration due to aging) are in competition and, depending on the flow
conditions, one of them becomes dominant and makes the system evolve in a
specific direction.Comment: The original publication is available at http://www.springerlink.co
GaSbBi alloys and heterostructures: fabrication and properties
International audienceDilute bismuth (Bi) III-V alloys have recently attracted great attention, due to their properties of band-gap reduction and spin-orbit splitting. The incorporation of Bi into antimonide based III-V semiconductors is very attractive for the development of new optoelectronic devices working in the mid-infrared range (2-5 ”m). However, due to its large size, Bi does not readily incorporate into III-V alloys and the epitaxy of III-V dilute bismides is thus very challenging. This book chapter presents the most recent developments in the epitaxy and characterization of GaSbBi alloys and heterostructures
Epidemiology of surgery associated acute kidney injury (EPIS-AKI) : a prospective international observational multi-center clinical study
The incidence, patient features, risk factors and outcomes of surgery-associated postoperative acute kidney injury (PO-AKI) across different countries and health care systems is unclear. We conducted an international prospective, observational, multi-center study in 30 countries in patients undergoing major surgery (> 2-h duration and postoperative intensive care unit (ICU) or high dependency unit admission). The primary endpoint was the occurrence of PO-AKI within 72 h of surgery defined by the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Secondary endpoints included PO-AKI severity and duration, use of renal replacement therapy (RRT), mortality, and ICU and hospital length of stay. We studied 10,568 patients and 1945 (18.4%) developed PO-AKI (1236 (63.5%) KDIGO stage 1500 (25.7%) KDIGO stage 2209 (10.7%) KDIGO stage 3). In 33.8% PO-AKI was persistent, and 170/1945 (8.7%) of patients with PO-AKI received RRT in the ICU. Patients with PO-AKI had greater ICU (6.3% vs. 0.7%) and hospital (8.6% vs. 1.4%) mortality, and longer ICU (median 2 (Q1-Q3, 1-3) days vs. 3 (Q1-Q3, 1-6) days) and hospital length of stay (median 14 (Q1-Q3, 9-24) days vs. 10 (Q1-Q3, 7-17) days). Risk factors for PO-AKI included older age, comorbidities (hypertension, diabetes, chronic kidney disease), type, duration and urgency of surgery as well as intraoperative vasopressors, and aminoglycosides administration. In a comprehensive multinational study, approximately one in five patients develop PO-AKI after major surgery. Increasing severity of PO-AKI is associated with a progressive increase in adverse outcomes. Our findings indicate that PO-AKI represents a significant burden for health care worldwide
Recent experimental probes of shear banding
Recent experimental techniques used to investigate shear banding are
reviewed. After recalling the rheological signature of shear-banded flows, we
summarize the various tools for measuring locally the microstructure and the
velocity field under shear. Local velocity measurements using dynamic light
scattering and ultrasound are emphasized. A few results are extracted from
current works to illustrate open questions and directions for future research.Comment: Review paper, 23 pages, 11 figures, 204 reference
- âŠ