31,559 research outputs found

    Neutron scattering as a probe of the Fe-pnicitide superconducting gap

    Full text link
    Inelastic neutron scattering provides a probe for studying the spin and momentum structure of the superconducting gap. Here, using a two-orbital model for the Fe-pnicitide superconductors and an RPA-BCS approximation for the dynamic spin susceptibility, we explore the scattering response for various gaps that have been proposed.Comment: 5 pages, 4 figure

    Systematic analysis of a spin-susceptibility representation of the pairing interaction in the 2D Hubbard model

    Full text link
    A dynamic cluster quantum Monte Carlo algorithm is used to study a spin susceptibility representation of the pairing interaction for the two-dimensional Hubbard model with an on-site Coulomb interaction equal to the bandwidth for various doping levels. We find that the pairing interaction is well approximated by {3/2}\Ub(T)^2\chi(K-K') with an effective temperature and doping dependent coupling \Ub(T) and the numerically calculated spin susceptibility χ(KK)\chi(K-K'). We show that at low temperatures, \Ub may be accurately determined from a corresponding spin susceptibility based calculation of the single-particle self-energy. We conclude that the strength of the d-wave pairing interaction, characterized by the mean-field transition temperature, can be determined from a knowledge of the dressed spin susceptibility and the nodal quasiparticle spectral weight. This has important implications with respect to the questions of whether spin fluctuations are responsible for pairing in the high-Tc_c cuprates.Comment: 5 pages, 5 figure

    Month of birth influences survival up to age 105+: first results from the age validation study of German semi-supercentenarians

    Get PDF
    Using data from Germany, we examine if month of birth influences survival up to age 105. Since age reporting at the highest ages is notoriously unreliable we draw on age-validated information from a huge age validation project of 1487 alleged German semi-supercentenarians aged 105+. We use month of birth as an exogenous indicator for seasonal changes in the environment around the time of birth. We find that the seasonal distribution of birth dates changes with age. For 925 age-validated semi-supercentenarians the seasonality is more pronounced than at the time of their births (1880-1900). Among the December-born the relative risk of survival from birth to age 105+ is 16 per cent higher than the average, among the June-born, 23 per cent lower. The month-of-birth pattern in the survival risks of the German semi-supercentenarians resembles closely the month-of-birth pattern in remaining life expectancy at age 50 in Denmark.

    The Structure of the Pairing Interaction in the 2D Hubbard Model

    Full text link
    Dynamic cluster Monte Carlo calculations for the doped two-dimensional Hubbard model are used to study the irreducible particle-particle vertex responsible for dx2y2d_{x^2-y^2} pairing in this model. This vertex increases with increasing momentum transfer and decreases when the energy transfer exceeds a scale associated with the Q=(π,π)Q=(\pi, \pi) spin susceptibility. Using an exact decomposition of this vertex into a fully irreducible two-fermion vertex and charge and magnetic exchange channels, the dominant part of the effective pairing interaction is found to come from the magnetic, spin S=1 exchange channel.Comment: Published version. 4 pages, 4 figure

    Noise-Activated Escape from a Sloshing Potential Well

    Full text link
    We treat the noise-activated escape from a one-dimensional potential well of an overdamped particle, to which a periodic force of fixed frequency is applied. We determine the boundary layer behavior, and the physically relevant length scales, near the oscillating well top. We show how stochastic behavior near the well top generalizes the behavior first determined by Kramers, in the case without forcing. Both the case when the forcing dies away in the weak noise limit, and the case when it does not, are examined. We also discuss the relevance of various scaling regimes to recent optical trap experiments.Comment: 9 pages, no figures, REVTeX, expanded versio

    Unfolding and unzipping of single-stranded DNA by stretching

    Full text link
    We present a theoretical study of single-stranded DNA under stretching. Within the proposed framework, the effects of basepairing on the mechanical response of the molecule can be studied in combination with an arbitrary underlying model of chain elasticity. In a generic case, we show that the stretching curve of ssDNA exhibits two distinct features: the second-order "unfolding" phase transition, and a sharp crossover, reminiscent of the first-order "unzipping" transition in dsDNA. We apply the theory to the particular cases of Worm-like Chain (WLC) and Freely-Joint Chain (FJC) models, and discuss the universal and model--dependent features of the mechanical response of ssDNA. In particular, we show that variation of the width of the unzipping crossover with interaction strength is very sensitive to the energetics of hairpin loops. This opens a new way of testing the elastic properties of ssDNA.Comment: 7 pages, 4 figures, substantially revised versio
    corecore