4,397 research outputs found
Non-linear Preheating with Scalar Metric Perturbations
We have studied preheating of field perturbations in a 3-dimensional lattice
including the effect of scalar metric perturbations, in two generic models of
inflation: chaotic inflation with a quartic potential, and standard hybrid
inflation. We have prepared the initial state for the classical evolution of
the system with vanishing vector and tensor metric perturbations, consistent
with the constraint equations, the energy and momentum constraints. The
non-linear evolution inevitably generates vector and tensor modes, and this
reflects on how well the constraint equations are fulfilled during the
evolution. The induced preheating of the scalar metric perturbations is not
large enough to backreact onto the fields, but it could affect the evolution of
vector and tensor modes. This is the case in hybrid inflation for some values
of the coupling and the height of potential . For example with
GeV, preheating of scalar perturbations is such that
their source term in the evolution equation of tensor and vector becomes
comparable to that of the field anisotropic stress.Comment: 15 pages, 12 eps figure
Non-linear metric perturbation enhancement of primordial gravitational waves
We present the evolution of the full set of Einstein equations during
preheating after inflation. We study a generic supersymmetric model of hybrid
inflation, integrating fields and metric fluctuations in a 3-dimensional
lattice. We take initial conditions consistent with Eintein's constraint
equations. The induced preheating of the metric fluctuations is not large
enough to backreact onto the fields, but preheating of the scalar modes does
affect the evolution of vector and tensor modes. In particular, they do enhance
the induced stochastic background of gravitational waves during preheating,
giving an energy density in general an order of magnitude larger than that
obtained by evolving the tensors fluctuations in an homogeneous background
metric. This enhancement can improve the expectations for detection by planned
gravitational waves observatories.Comment: 5 pages, 4 eps figures, matches Phys. Rev. Lett. versio
The scalar sector in the Myers-Pospelov model
We construct a perturbative expansion of the scalar sector in the
Myers-Pospelov model, up to second order in the Lorentz violating parameter and
taking into account its higher-order time derivative character. This expansion
allows us to construct an hermitian positive-definite Hamiltonian which
provides a correct basis for quantization. Demanding that the modified normal
frequencies remain real requires the introduction of an upper bound in the
magnitude |k| of the momentum, which is a manifestation of the effective
character of the model. The free scalar propagator, including the corresponding
modified dispersion relations, is also calculated to the given order, thus
providing the starting point to consider radiative corrections when
interactions are introduced.Comment: Published in AIP Conf.Proc.977:214-223,200
QFT results for neutrino oscillations and New Physics
The CP asymmetry in neutrino oscillations, assuming new physics at production
and/or detection processes, is analyzed. We compute this CP asymmetry using the
standard quantum field theory within a general new physics scenario that may
generate new sources of CP and flavor violation. Well known results for the CP
asymmetry are reproduced in the case of V -A operators, and additional
contributions from new physics operators are derived. We apply this formalism
to SUSY extensions of the Standard Model where the contributions from new
operators could produce a CP asymmetry observable in the next generation of
neutrino experiments.Comment: 6 pages, 3 figures, version to be published in Phys.Rev.
Limits to differences in active and passive charges
We explore consequences of a hypothetical difference between active charges,
which generate electric fields, and passive charges, which respond to them. A
confrontation to experiments using atoms, molecules, or macroscopic matter
yields limits on their fractional difference at levels down to 10^-21, which at
the same time corresponds to an experimental confirmation of Newtons third law.Comment: 6 pages Revtex. To appear in Phys. Rev.
MACHe3, a prototype for non-baryonic dark matter search: KeV event detection and multicell correlation
Superfluid He3 at ultra-low temperatures (100 microKelvins) is a sensitive
medium for the bolometric detection of particles. MACHe3 (MAtrix of Cells of
Helium 3) is a project for non-baryonic dark matter search using He3 as a
sensitive medium. Simulations made on a high granularity detector show a very
good rejection to background signals. A multicell prototype including 3
bolometers has been developed to allow correlations between the cells for
background event discrimination. One of the cells contains a low activity Co57
source providing conversion electrons of 7.3 and 13.6 keV to confirm the
detection of low energy events. First results on the multicell prototype are
presented. A detection threshold of 1 keV has been achieved. The detection of
low energy conversion electrons coming from the Co57 source is highlighted as
well as the cosmic muon spectrum measurement. The possibility to reject
background events by using the correlation among the cells is demonstrated from
the simultaneous detection of muons in different cells
Geometrical dynamics of Born-Infeld objects
We present a geometrical inspired study of the dynamics of -branes. We
focus on the usual nonpolynomial Dirac-Born-Infeld action for the worldvolume
swept out by the brane in its evolution in general background spacetimes. We
emphasize the form of the resulting equations of motion which are quite simple
and resemble Newton's second law, complemented with a conservation law for a
worldvolume bicurrent. We take a closer look at the classical Hamiltonian
analysis which is supported by the ADM framework of general relativity. The
constraints and their algebra are identified as well as the geometrical role
they play in phase space. In order to illustrate our results, we review the
dynamics of a -brane immersed in a background spacetime.
We exhibit the mechanical properties of Born-Infeld objects paving the way to a
consistent quantum formulation.Comment: LaTex, 20 pages, no figure
- …
