15,785 research outputs found

    Metallic Continuum Quantum Ferromagnets at Finite Temperature

    Full text link
    We study via renormalization group (RG) and large N methods the problem of continuum SU(N) quantum Heisenberg ferromagnets (QHF) coupled to gapless electrons. We establish the phase diagram of the dissipative problem and investigate the changes in the Curie temperature, magnetization, and magnetic correlation length due to dissipation and both thermal and quantum fluctuations. We show that the interplay between the topological term (Berry's phase) and dissipation leads to non-trivial effects for the finite temperature critical behavior.Comment: Corrected typos, new discussion of T=0 results, to appear in Europhys. Let

    Symplectic Quantization for Reducible Systems

    Get PDF
    We study an extension of the symplectic formalism in order to quantize reducible systems. We show that a procedure like {\it ghost-of-ghost} of the BFV method can be applied in terms of Lagrange multipliers. We use the developed formalism to quantize the antisymmetric Abelian gauge fields.Comment: 12 pages, IF-UFRJ-22/9

    The effect of different regulators in the non-local field-antifield quantization

    Full text link
    Recently it was shown how to regularize the Batalin-Vilkovisky (BV) field-antifield formalism of quantization of gauge theories with the non-local regularization (NLR) method. The objective of this work is to make an analysis of the behaviour of this NLR formalism, connected to the BV framework, using two different regulators: a simple second order differential regulator and a Fujikawa-like regulator. This analysis has been made in the light of the well known fact that different regulators can generate different expressions for anomalies that are related by a local couterterm, or that are equivalent after a reparametrization. This has been done by computing precisely the anomaly of the chiral Schwinger model.Comment: 9 pages, Revtex. To appear in Int. J. Mod. Phys.

    Distortion of the perfect lattice structure in bilayer graphene

    Full text link
    We consider the instability of bilayer graphene with respect to a distorted configuration in the same spirit as the model introduced by Su, Schrieffer and Heeger. By computing the total energy of a distorted bilayer, we conclude that the ground state of the system favors a finite distortion. We explore how the equilibrium configuration changes with carrier density and an applied potential difference between the two layers

    Interplay between disorder, quantum and thermal fluctuations in ferromagnetic alloys: The case of UCu2Si(2-x)Ge(x)

    Full text link
    We consider, theoretically and experimentally, the effects of structural disorder, quantum and thermal fluctuations in the magnetic and transport properties of certain ferromagnetic alloys.We study the particular case of UCu2Si(2-x)Ge(x). The low temperature resistivity, rho(T,x), exhibits Fermi liquid (FL) behavior as a function of temperature T for all values of x, which can be interpreted as a result of the magnetic scattering of the conduction electrons from the localized U spins. The residual resistivity, rho(0,x), follows the behavior of a disordered binary alloy. The observed non-monotonic dependence of the Curie temperature, Tc(x), with x can be explained within a model of localized spins interacting with an electronic bath whose transport properties cross-over from ballistic to diffusive regimes. Our results clearly show that the Curie temperature of certain alloys can be enhanced due to the interplay between quantum and thermal fluctuations with disorder.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
    • …
    corecore