55 research outputs found
Symbolic Object Code Analysis
Current software model checkers quickly reach their limit when being applied to verifying pointer safety properties in source code that includes function pointers and inlined assembly. This paper introduces an alternative technique for checking pointer safety violations, called Symbolic Object Code Analysis (SOCA), which is based on bounded symbolic execution, incorporates path-sensitive slicing, and employs the SMT solver Yices as its execution and verification engine. Extensive experimental results of a prototypic SOCA Verifier, using the Verisec suite and almost 10,000 Linux device driver functions as benchmarks, show that SOCA performs competitively to current source-code model checkers and that it also scales well when applied to real operating systems code and pointer safety issues. SOCA effectively explores semantic niches of software that current software verifiers do not reach
Stopping at the sight of food: How gender and obesity impact on response inhibition
Recent research indicates that reduced inhibitory control is associated with higher body mass index (BMI), higher food craving and increased food intake. However, experimental evidence for the relationship between response inhibition and weight status is inconsistent and to date has been investigated predominantly in women. In the current study, 56 participants (26 obese, 30 lean; 27 female, 29 male) performed a Food Picture Rating Task followed by a Stop Signal Task where pictures of palatable high or low caloric food or non-food items were presented prior to the Go signal. We further assessed participantsâ self-reported eating behavior and trait impulsivity as potential factors influencing response inhibition, in particular within the food context. Independent of BMI, women showed significantly higher liking for low caloric food items than men. This was accompanied by shorter Stop Signal Reaction Times (SSRT) after high compared to low caloric food pictures for women, and shorter SSRT in women compared to men for high caloric food. No influence of gender on SSRT was observable outside of the food context. While SSRTs did not differ between obese and lean participants across the three picture categories, we found a moderating effect of trait impulsivity on the relationship between BMI and SSRT, specifically in the high caloric food context. Higher BMI was predictive of longer SSRT only for participants with low to normal trait impulsivity, pointing at a complex interplay between response inhibition, general impulsivity and weight status. Our results support the notion that individuals with obesity do not suffer from diminished response inhibition capacity per se. Rather, the ability to withhold a response depends on context and social norms, and strongly interacts with factors like gender and trait impulsivity
Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides
Multidrugâresistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By siteâspecific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000âfold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using dâAlaâdâAla revealed a mode of action beyond inhibition of cellâwall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an inâ
vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics
Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides
Multidrugâresistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By siteâspecific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000âfold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using dâAlaâdâAla revealed a mode of action beyond inhibition of cellâwall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an inâ
vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics
Impact of linker modification and PEGylation of vancomycin conjugates on structure-activity relationships and pharmacokinetics
As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity
An Implementation of a High Assurance Smart Meter Using Protected Module Architectures
Part 2: Secure Hardware SystemsInternational audienceDue to ongoing changes in the power grid towards decentralised and highly volatile energy production, smart electricity meters are required to provide fine-grained measurement and timely remote access to consumption and production data. This enables flexible tariffing and dynamic load optimisation. As the power grid forms part of the critical infrastructure of our society, increasing the resilience of the gridâs software components against failures and attacks is vitally important.In this paper we explore the use of Protected Module Architectures (PMAs) to securely implement and deploy software for smart electricity meters. Outlining security challenges and an architectural solution in the light of security features provided by PMAs, we evaluate a proof-of-concept implementation of a security-focused smart metering scenario. Our implementation is based on Sancus, an embedded PMA for low-power microcontrollers. The evaluation of our prototype provides strong indication for the feasibility of implementing a PMA-based high assurance smart meter with a very small software Trusted Computing Base, which would be suitable for security certification and formal verification
- âŠ