17,333 research outputs found

    Profiles of the Unitarity Triangle and CP-Violating Phases in the Standard Model and Supersymmetric Theories

    Full text link
    We report on a comparative study of the profile of the CKM unitarity triangle, and the resulting CP asymmetries in B decays, in the standard model and in several variants of the minimal supersymmetric standard model (MSSM), characterized by a single phase in the quark flavour mixing matrix. The supersymmetric contributions to the mass differences \Delta M_d, \Delta M_s and to the CP-violating quantity |\epsilon| are, to an excellent approximation, equal to each other in these theories, allowing for a particularly simple way of implementing the resulting constraints on the elements of V_{CKM} from the present knowledge of these quantities. Incorporating the next-to-leading-order corrections and applying the current direct and indirect constraints on the supersymmetric parameters, we find that the predicted ranges of \sin 2 \beta in the standard model and in MSSM models are very similar. However, precise measurements at B-factories and hadron machines may be able to distinguish these theories in terms of the other two CP-violating phases \alpha and \gamma. This is illustrated for some representative values of the supersymmetric contributions in \Delta M_d, \Delta M_s and |\epsilon|.Comment: 30 pages, 9 figures; typos corrected, minor notation change; matches version to appear in the European Physical Journal

    New Physics Signals through CP Violation in B -> rho,pi

    Full text link
    We describe here a method for detecting physics beyond the standard model via CP violation in B->rho,pi decays. Using a Dalitz-plot analysis to obtain alpha, along with an analytical extraction of the various tree (T) and penguin (P) amplitudes, we obtain a criterion for the absence of new physics (NP). This criterion involves the comparison of the measured |P/T| ratio with its value as predicted by QCD factorization. We show that the detection of NP via this method has a good efficiency when compared with the corresponding technique using B->pi,pi decays.Comment: 8 pages, 4 figures, talk given at MRST 2004: From Quarks to Cosmology, Concordia University, Montreal, May 200

    Is it possible to Measure the Weak Phase of a Penguin Diagram?

    Get PDF
    The bdb\to d penguin amplitude receives contributions from internal uu, cc and tt-quarks. We show that it is impossible to measure the weak phase of any of these penguin contributions without theoretical input. However, a single assumption involving the hadronic parameters makes it possible to obtain the weak phase and test for the presence of new physics in the bdb\to d flavour-changing neutral current.Comment: 4 pages, latex, no figures, talk given by R. Sinha at the 3rd International Conference on B Physics and CP Violation, Taipei, Taiwan, December 3-7, 1999, to appear in the Proceeding

    Precession during merger 1: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger

    Full text link
    The short gravitational wave signal from the merger of compact binaries encodes a surprising amount of information about the strong-field dynamics of merger into frequencies accessible to ground-based interferometers. In this paper we describe a previously-unknown "precession" of the peak emission direction with time, both before and after the merger, about the total angular momentum direction. We demonstrate the gravitational wave polarization encodes the orientation of this direction to the line of sight. We argue the effects of polarization can be estimated nonparametrically, directly from the gravitational wave signal as seen along one line of sight, as a slowly-varying feature on top of a rapidly-varying carrier. After merger, our results can be interpreted as a coherent excitation of quasinormal modes of different angular orders, a superposition which naturally "precesses" and modulates the line-of-sight amplitude. Recent analytic calculations have arrived at a similar geometric interpretation. We suspect the line-of-sight polarization content will be a convenient observable with which to define new high-precision tests of general relativity using gravitational waves. Additionally, as the nonlinear merger process seeds the initial coherent perturbation, we speculate the amplitude of this effect provides a new probe of the strong-field dynamics during merger. To demonstrate the ubiquity of the effects we describe, we summarize the post-merger evolution of 104 generic precessing binary mergers. Finally, we provide estimates for the detectable impacts of precession on the waveforms from high-mass sources. These expressions may identify new precessing binary parameters whose waveforms are dissimilar from the existing sample.Comment: 11 figures; v2 includes response to referee suggestion

    Probing New Physics via an Angular Analysis of B --> V1 V2 decays

    Full text link
    We show that an angular analysis of B --> V1 V2 decays yields numerous tests for new physics in the decay amplitudes. Unlike direct CP asymmetries, many of these new-physics observables are nonzero even if the strong phase differences vanish. For certain observables, neither time-dependent measurements nor tagging is necessary. Should a signal for new physics be found, one can place a lower limit on the size of the new-physics parameters, as well as on their effect on the measurement of the phase of B0--Bbar0 mixing.Comment: 9 pages, plain latex, no figures. Title modified slightly. Paragraph added about viability of method. Conclusions unchanged. To be published in Europhysics Letter
    corecore