18 research outputs found

    Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management

    No full text
    Dinorah Leyva-Illades,1–3 Sharon DeMorrow1–3 1Digestive Disease Research Center, Scott and White Hospital, Temple, TX, USA; 2Department of Internal MedicineTexas A&M Health Science Center, Temple, TX, USA; 3Research Service, Central Texas Veterans Health Care System, Temple, TX, USA Abstract: G protein-coupled receptors (GPCRs) modulate a vast array of cellular processes. The current review gives an overview of the general characteristics of GPCRs and their role in physiological conditions. In addition, it describes the current knowledge of the physiological and pathophysiological functions of GPR55, an orphan GPCR, and how it can be exploited as a therapeutic target to combat various cancers. Keywords: GPR55, cancer, GPCR, endocannabinoid

    Neuropeptide Y inhibits biliary hyperplasia of cholestatic rats by paracrine and autocrine mechanisms

    No full text
    Neuropeptide Y (NPY) exerts its functions through six subtypes of receptors (Y-1-Y-6). Biliary homeostasis is regulated by several factors through autocrine/paracrine signaling. NPY inhibits cholangiocarcinoma growth; however, no information exists regarding the autocrine/paracrine role of NPY on biliary hyperplasia during cholestasis. The aims of this study were to determine: 1) the expression of NPY and Y-1-Y-5 in cholangiocytes and 2) the paracrine/autocrine effects of NPY on cholangiocyte proliferation. Normal or bile duct ligation (BDL) rats were treated with NPY, neutralizing anti-NPY antibody, or vehicle for 7 days. NPY and NPY receptor (NPYR) expression was assessed in liver sections and isolated cholangiocytes. NPY secretion was assessed in serum and bile from normal and BDL rats, as well as supernatants from normal and BDL cholangiocytes and normal rat cholangiocyte cell line [intrahepatic normal cholangiocyte culture (NRICC)]. We evaluated intrahepatic bile ductal mass (IBDM) in liver sections and proliferation in cholangiocytes. With the use of NRICC, the effects of NPY or anti-NPY antibody on cholangiocyte proliferation were determined. The expression of NPY and all NPYR were increased after BDL. NPY levels were lower in serum and cholangiocyte supernatant from BDL compared with normal rats. NPY secretion from NRICC was detected at both the basolateral and apical domains. Chronic NPY treatment decreased proliferating cellular nuclear antigen (PCNA) expression and IBDM in BDL rats. Administration of anti-NPY antibody to BDL rats increased cholangiocyte proliferation and IBDM. NPY treatment of NRICC decreased PCNA expression and increased the cell cycle arrest, whereas treatment with anti-NPY antibody increased proliferation. Therapies targeting NPY-mediated signaling may prove beneficial for the treatment of cholangiopathies

    Expression of HIF-1α and Genes Involved in Glucose Metabolism Is Increased in Cervical Cancer and HPV-16-Positive Cell Lines

    No full text
    Cervical cancer (CC) is the most common cancer in women in the lower genital tract. The main risk factor for developing CC is persistent infection with HPV 16. The E6 and E7 oncoproteins of HPV 16 have been related to metabolic reprogramming in cancer through the regulation of the expression and stability of HIF-1α and consequently of the expression of its target genes, such as HIF1A (HIF-1α), SLC2A1 (GLUT1), LDHA, CA9 (CAIX), SLC16A3 (MCT4), and BSG (Basigin or CD147), which are involved in glucose metabolism. This work aimed to evaluate the expression of HIF-1α, GLUT1, LDHA, CAIX, MCT4, and Basigin in patient samples and CC cell lines. To evaluate the expression level of HIF1A, SLC2A1, LDHA, CA9, SLC16A3, and BSG genes in tissue from patients with CC and normal tissue, the TCGA dataset was used. To evaluate the expression level of these genes by RT-qPCR in CC cell lines, HPV-negative (C-33A) and HPV-16-positive (SiHa and Ca Ski) cell lines were used. Increased expression of HIF1A, SLC2A1, LDHA, SLC16A3, and BSG was found in Ca Ski and CA9 in SiHa compared to C-33A. Similar results were observed in CC tissues compared to normal tissue obtained by bioinformatics analysis. In conclusion, the expression of HIF-1α, GLUT1, LDHA, CAIX, MCT4, and BSG genes is increased in CC and HPV-16-positive cell lines

    Disease-Homologous Mutation in the Cation Diffusion Facilitator Protein MamM Causes Single-Domain Structural Loss and Signifies Its Importance

    No full text
    Cation diffusion facilitators (CDF) are highly conserved, metal ion efflux transporters that maintain divalent transition metal cation homeostasis. Most CDF proteins contain two domains, the cation transporting transmembrane domain and the regulatory cytoplasmic C-terminal domain (CTD). MamM is a magnetosome-associated CDF protein essential for the biomineralization of magnetic iron-oxide particles in magnetotactic bacteria. To investigate the structure-function relationship of CDF cytoplasmic domains, we characterized a MamM M250P mutation that is synonymous with the disease-related mutation L349P of the human CDF protein ZnT-10. Our results show that the M250P exchange in MamM causes severe structural changes in its CTD resulting in abnormal reduced function. Our in vivo, in vitro and in silico studies indicate that the CTD fold is critical for CDF proteins’ proper function and support the previously suggested role of the CDF cytoplasmic domain as a CDF regulatory element. Based on our results, we also suggest a mechanism for the effects of the ZnT-10 L349P mutation in human
    corecore