34 research outputs found

    Development of fungal inocula for bioaugmentation of contaminated soils

    Full text link
    This report describes novel fungal inocula for bioaugmentation of soils contaminated with hazardous organic compounds. The inocula are in the form of pelleted solid substrates coated with a sodium alginate suspension of fungal spores or mycelial fragments and incubated until overgrown with the mycelium of selected lignin-degrading fungi. The organisms evaluated were Phanerochaete chrysosporium (BKM F-1767, ATCC 42725), P. sordida (HHB-8922-Sp), Irpex lacteus (Mad-517, ATCC 11245), Bjerkandera adusta (FP-135160-Sp, ATCC 62023), and Trametes versicolor (MD-277). The pelleted fungal inocula resisted competition and proliferation from indigenous soil microbes, were lower in moisture content than current fungal inocula, and had sufficient mechanical strength to allow handling and introduction into the soil without a change in the mechanical consistency of the pellets. Inoculated at a rate of 3% in artificially contaminated nonsterile soil, I. lacteus, B. adusta, and T. versicolor removed 86, 82, and 90%, respectively, of the pentachlorophenol in 4 weeks. A mathematical model was developed to explain moisture distribution in a hydrogel-coated pelleted substrate.</jats:p

    Colonization and Biodegradation of  Photo-Oxidized Low-Density Polyethylene (LDPE) by New Strains of Aspergillus

    No full text
    The primary objective of this study was the isolation of low-density polyethylene (LDPE)-degrading microorganisms. Soil samples were obtained from an aged municipal landfill in Tehran, Iran, and enrichment culture procedures were performed using LDPE films and powder. Screening steps were conducted using linear paraffin, liquid ethylene oligomer, and LDPE powder as the sole source of carbon. Two landfill-source isolates, identified as 'Lysinibacillus xylanilyticus' XDB9 (T) strain S7-10F and 'Aspergillus niger' strain F1-16S, were selected as super strains. Photo-oxidation (25 days under ultraviolet [UV] irradiation) was used as a pretreatment of the LDPE samples without pro-oxidant additives. The PE biodegradation process was performed for 56 days in a liquid mineral medium using UV-irradiated pure LDPE films without pro-oxidant additives in the presence of the bacterial isolate, the fungal isolate, and the mixture of the two isolates. The process was monitored by measuring the fungal biomass, the bacterial growth, and the pH of the medium. During the process, the fungal biomass and the bacterial growth increased, and the pH of the medium decreased, which suggests the utilization of the preoxidized PE by the selected isolates as the sole source of carbon. Carbonyl and double bond indices exhibited the highest amount of decrement and increment, respectively, in the presence of the fungal isolate, and the lowest indices were obtained from the treatment of a mixture of both fungal and bacterial isolates. Fourier transform infrared (FT-IR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses showed that the selected isolates modified and colonized preoxidized pure LDPE films without pro-oxidant additives
    corecore