3,147 research outputs found
Becoming a Cosmopolitan Lawyer
The practice of law has become increasingly globalized over the last forty years. Law firms, although national in origin, now depict themselves as global, international, or regional.1 Most of the lawyers practicing in these firms are educated and trained in one jurisdiction but work globally. True, the market for LL.M. degrees has prompted inter-jurisdictional exchanges in legal education, so we find increasing numbers of law students educated in civil law systems migrating to common law jurisdictions.2 But as a whole, the legal profession has come to globalization gradually, led there by client demand rather than an inherent desire to supply global services. If we compare the spread of the law practice to that of accounting and management consulting, we can see that law has remained a cottage industry to a large extent.3Full Tex
Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study
The Field Induced Spin Density Wave phases observed in quasi-one-dimensional
conductors of the Bechgaard salts family under magnetic field exhibit both Spin
Density Wave order and a Quantized Hall Effect, which may exhibit sign
reversals. The original nature of the condensed phases is evidenced by the
collective mode spectrum. Besides the Goldstone modes, a quasi periodic
structure of Magneto-Roton modes, predicted to exist for a monotonic sequence
of Hall Quantum numbers, is confirmed, and a second mode is shown to exist
within the single particle gap. We present numerical estimates of the
Magneto-Roton mode energies in a generic case of the monotonic sequence. The
mass anisotropy of the collective mode is calculated. We show how differently
the MR spectrum evolves with magnetic field at low and high fields. The
collective mode spectrum should have specific features, in the sign reversed
"Ribault Phase", as compared to modes of the majority sign phases. We
investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat
preprint cond-mat/9709210, but cannot be described as a replaced version,
because it contains a significant amount of new material dealing with the
instability line and with the topic of Ribault Phases. It contains 13 figures
(.ps files
Psychiatric Issues in Therapeutic Abortion
For the purpose of this discussion I should like to focus your attention on the psychiatric involvement, questions, dilemmas, and opinions concerning therapeutic abortion. Under most of the existing statutes, therapeutic abortion is only permitted to preserve the life of the mother. Therefore, within the context of strict interpretation, the sole psychiatric indication is a high probability of suicide by the pregnant patient
Phonon-mediated tuning of instabilities in the Hubbard model at half-filling
We obtain the phase diagram of the half-filled two-dimensional Hubbard model
on a square lattice in the presence of Einstein phonons. We find that the
interplay between the instantaneous electron-electron repulsion and
electron-phonon interaction leads to new phases. In particular, a
d-wave superconducting phase emerges when both anisotropic phonons
and repulsive Hubbard interaction are present. For large electron-phonon
couplings, charge-density-wave and s-wave superconducting regions also appear
in the phase diagram, and the widths of these regions are strongly dependent on
the phonon frequency, indicating that retardation effects play an important
role. Since at half-filling the Fermi surface is nested, spin-density-wave is
recovered when the repulsive interaction dominates. We employ a functional
multiscale renormalization-group method that includes both electron-electron
and electron-phonon interactions, and take retardation effects fully into
account.Comment: 8 pages, 5 figure
Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media
We demonstrate the existence of stable three-dimensional spatiotemporal
solitons (STSs) in media with a nonlocal cubic nonlinearity. Fundamental
(nonspinning) STSs forming one-parameter families are stable if their
propagation constant exceeds a certain critical value, that is inversely
proportional to the range of nonlocality of nonlinear response. All spinning
three-dimensional STSs are found to be unstable.Comment: 14 pages, 6 figures, accepted to PRE, Rapid Communication
Natural heritage inventory of the Clear Creek Ranger District, Arapaho-Roosevelt National Forest: phase II, final report
Prepared for: Clear Creek Ranger District, Arapaho-Roosevelt National Forest.Includes bibliographical references
Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities
We show that the quadratic interaction of fundamental and second harmonics in
a bulk dispersive medium, combined with self-defocusing cubic nonlinearity,
give rise to completely localized spatiotemporal solitons (vortex tori) with
vorticity s=1. There is no threshold necessary for the existence of these
solitons. They are found to be stable against small perturbations if their
energy exceeds a certain critical value, so that the stability domain occupies
about 10% of the existence region of the solitons. We also demonstrate that the
s=1 solitons are stable against very strong perturbations initially added to
them. However, on the contrary to spatial vortex solitons in the same model,
the spatiotemporal solitons with s=2 are never stable.Comment: latex text, 10 ps and 2 jpg figures; Physical Review E, in pres
Collisions between counter-rotating solitary vortices in the three-dimensional Ginzburg-Landau equation
We report results of collisions between coaxial vortex solitons with topological charges ±S in the complex cubic-quintic Ginzburg-Landau equation. With the increase of the collision momentum, merger of the vortices into one or two dipole or quadrupole clusters of fundamental solitons (for S=1 and 2, respectively) is followed by the appearance of pairs of counter-rotating “unfinished vortices,” in combination with a soliton cluster or without it. Finally, the collisions become elastic. The clusters generated by the collisions are very robust, while the “unfinished vortices,” eventually split into soliton pairs
- …