820 research outputs found

    The spin-echo system reconsidered

    Full text link
    Simple models have played an important role in the discussion of foundational issues in statistical mechanics. Among them the spin--echo system is of particular interest since it can be realized experimentally. This has led to inferences being drawn about approaches to the foundations of statistical mechanics, particularly with respect to the use of coarse-graining. We examine these claims with the help of computer simulations

    SUPPORT Tools for evidence-informed health Policymaking (STP)

    Get PDF
    This article is the Introduction to a series written for people responsible for making decisions about health policies and programmes and for those who support these decision makers

    Anomalous latent heat in non-equilibrium phase transitions

    Full text link
    We study first-order phase transitions in a two-temperature system, where due to the time-scale separation all the basic thermodynamical quantities (free energy, entropy, etc) are well-defined. The sign of the latent heat is found to be counterintuitive: it is positive when going from the phase where the temperatures and the entropy are higher to the one where these quantities are lower. The effect exists only out of equilibrium and requires conflicting interactions. It is displayed on a lattice gas model of ferromagnetically interacting spin-1/2 particles.Comment: 4 pages, 2 figure

    Exactly Solvable Model of Monomer-Monomer Reactions on a Two-Dimensional Random Catalytic Substrate

    Full text link
    We present an \textit{exactly solvable} model of a monomer-monomer A+B→∅A + B \to \emptyset reaction on a 2D inhomogeneous, catalytic substrate and study the equilibrium properties of the two-species adsorbate. The substrate contains randomly placed catalytic bonds of mean density qq which connect neighboring adsorption sites. The interacting AA and BB (monomer) species undergo continuous exchanges with corresponding adjacent gaseous reservoirs. A reaction A+B→∅A + B \to \emptyset takes place instantaneously if AA and BB particles occupy adsorption sites connected by a catalytic bond. We find that for the case of \textit{annealed} disorder in the placement of the catalytic bonds the reaction model under study can be mapped onto the general spin S=1S = 1 (GS1) model. Here we concentrate on a particular case in which the model reduces to an exactly solvable Blume-Emery-Griffiths (BEG) model (T. Horiguchi, Phys. Lett. A {\bf 113}, 425 (1986); F.Y. Wu, Phys. Lett. A, {\bf 116}, 245 (1986)) and derive an exact expression for the disorder-averaged equilibrium pressure of the two-species adsorbate. We show that at equal partial vapor pressures of the AA and BB species this system exhibits a second-order phase transition which reflects a spontaneous symmetry breaking with large fluctuations and progressive coverage of the entire substrate by either one of the species.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
    • …
    corecore