22 research outputs found
The Quantitative Modeling of Operational Risk: Between G-and-H and EVT
Operational risk has become an important risk component in the banking and insurance world. The availability of (few) reasonable data sets has given some authors the opportunity to analyze operational risk data and to propose different models for quantification. As proposed in Dutta and Perry [12], the parametric g-and-h distribution has recently emerged as an interesting candidate. In our paper, we discuss some fundamental properties of the g-and-h distribution and their link to extreme value theory (EVT). We show that for the g-and-h distribution, convergence of the excess distribution to the generalized Pareto distribution (GPD) is extremely slow and therefore quantile estimation using EVT may lead to inaccurate results if data are well modeled by a g-and-h distribution. We further discuss the subadditivity property of Value-at-Risk (VaR) for g-and-h random variables and show that for reasonable g and h parameter values, superadditivity may appear when estimating high quantiles. Finally, we look at the g-and-h distribution in the one-claim-causes-ruin paradig
The Quantitative Modeling of Operational Risk: Between G-and-H and EVT
Operational risk has become an important risk component in the banking and insurance world. The availability of (few) reasonable data sets has given some authors the opportunity to analyze operational risk data and to propose different models for quantification. As proposed in Dutta and Perry [12], the parametric g-and-h distribution has recently emerged as an interesting candidate.
In our paper, we discuss some fundamental properties of the g-and-h distribution and their link to extreme value theory (EVT). We show that for the g-and-h distribution, convergence of the excess distribution to the generalized Pareto distribution (GPD) is extremely slow and therefore quantile estimation using EVT may lead to inaccurate results if data are well modeled by a g-and-h distribution. We further discuss the subadditivity property of Value-at-Risk (VaR) for g-and-h random variables and show that for reasonable g and h parameter values, superadditivity may appear when estimating high quantiles. Finally, we look at the g-and-h distribution in the one-claim-causes-ruin paradigm.ISSN:0515-0361ISSN:1783-135
The quantitative modeling of operational risk: between g-and-h and EVT
Operational risk has become an important risk component in the banking and insurance world. The availability of (few) reasonable data sets has given some authors the opportunity to analyze operational risk data and to propose different models for quantification. As proposed in Dutta and Perry [10], the parametric g-and-h distribution has recently emerged as an interesting candidate. In our paper, we discuss some fundamental properties of the g-and-h distribution and their link to extreme value theory (EVT). We show that for the g-and-h distribution, convergence of the excess distribution to the generalized Pareto distribution (GPD) is extremely slow and therefore quantile estimation using EVT may lead to inaccurate results if data are well modeled by a g-and-h distribution. We further discuss the subadditivity property of Value-at-Risk (VaR) for g-and-h random variables and show that for reasonable g and h parameter values, superadditivity may appear when estimating high quantiles. Finally, we look at the g-and-h distribution in the one-claim-causes-ruin paradigm
Risk concentration and diversification: Second-order properties
The quantification of diversification benefits due to risk aggregation plays a prominent role in the (regulatory) capital management of large firms within the financial industry. However, the complexity of today's risk landscape makes a quantifiable reduction of risk concentration a challenging task. In the present paper we discuss some of the issues that may arise. The theory of second-order regular variation and second-order subexponentiality provides the ideal methodological framework to derive second-order approximations for the risk concentration and the diversification benefit. (C) 2010 Elsevier B.V. All rights reserved