53 research outputs found

    Bioavailability of Microplastics to Marine Zooplankton: Effect of Shape and Infochemicals

    Get PDF
    The underlying mechanisms that influence microplastic ingestion in marine zooplankton remain poorly understood. Here, we investigate how microplastics of a variety of shapes (bead, fiber, and fragment), in combination with the algal-derived infochemicals dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP), affect the ingestion rate of microplastics in three species of zooplankton, the copepods Calanus helgolandicus and Acartia tonsa and larvae of the European lobster Homarus gammarus. We show that shape affects microplastic bioavailability to different species of zooplankton, with each species ingesting significantly more of a certain shape: C. helgolandicus—fragments (P < 0.05); A. tonsa—fibers (P < 0.01); H. gammarus larvae—beads (P < 0.05). Thus, different feeding strategies between species may affect shape selectivity. Our results also showed significantly increased ingestion rates by C. helgolandicus on all microplastics that were infused with DMS (P < 0.01) and by H. gammarus larvae and A. tonsa on DMS-infused fibers and fragments (P < 0.05). By using a range of more environmentally relevant microplastics, our findings highlight how the feeding strategies of different zooplankton species may influence their susceptibility to microplastic ingestion. Furthermore, our novel study suggests that species reliant on chemosensory cues to locate their prey may be at an increased risk of ingesting aged microplastics in the marine environment

    Advancing the scientific study of prehospital mass casualty response through a Translational Science process: the T1 scoping literature review stage

    Get PDF
    PurposeThe European Union Horizon 2020 research and innovation funding program awarded the NIGHTINGALE grant to develop a toolkit to support first responders engaged in prehospital (PH) mass casualty incident (MCI) response. To reach the projects' objectives, the NIGHTINGALE consortium used a Translational Science (TS) process. The present work is the first TS stage (T1) aimed to extract data relevant for the subsequent modified Delphi study (T2) statements.MethodsThe authors were divided into three work groups (WGs) MCI Triage, PH Life Support and Damage Control (PHLSDC), and PH Processes (PHP). Each WG conducted simultaneous literature searches following the PRISMA extension for scoping reviews. Relevant data were extracted from the included articles and indexed using pre-identified PH MCI response themes and subthemes.ResultsThe initial search yielded 925 total references to be considered for title and abstract review (MCI Triage 311, PHLSDC 329, PHP 285), then 483 articles for full reference review (MCI Triage 111, PHLSDC 216, PHP 156), and finally 152 articles for the database extraction process (MCI Triage 27, PHLSDC 37, PHP 88). Most frequent subthemes and novel concepts have been identified as a basis for the elaboration of draft statements for the T2 modified Delphi study.ConclusionThe three simultaneous scoping reviews allowed the extraction of relevant PH MCI subthemes and novel concepts that will enable the NIGHTINGALE consortium to create scientifically anchored statements in the T2 modified Delphi study

    Abundance and distribution of sperm whales in the Canary Islands : can sperm whales in the Archipelago sustain the current level of ship-strike mortalities?

    Get PDF
    Funding was provided through an agreement between the Canary Islands Government and the Spanish Ministries of the Environment and Defence. Additional survey effort on the Amanay, Banquete and Concepción seamounts was funded by the Fundación Biodiversidad-MAGRAMA via the LIFE-INDEMARES project.Sperm whales are present in the Canary Islands year-round, suggesting that the archipelago is an important area for this species in the North Atlantic. However, the area experiences one of the highest reported rates of sperm whale ship-strike in the world. Here we investigate if the number of sperm whales found in the archipelago can sustain the current rate of ship-strike mortality. The results of this study may also have implications for offshore areas where concentrations of sperm whales may coincide with high densities of ship traffic, but where ship-strikes may be undocumented. The absolute abundance of sperm whales in an area of 52933 km2, covering the territorial waters of the Canary Islands, was estimated from 2668 km of acoustic line-transect survey using Distance sampling analysis. Data on sperm whale diving and acoustic behaviour, obtained from bio-logging, were used to calculate g(0) = 0.92, this is less than one because of occasional extended periods when whales do not echolocate. This resulted in an absolute abundance estimate of 224 sperm whales (95% log-normal CI 120-418) within the survey area. The recruitment capability of this number of whales, some 2.5 whales per year, is likely to be exceeded by the current ship-strike mortality rate. Furthermore, we found areas of higher whale density within the archipelago, many coincident with those previously described, suggesting that these are important habitats for females and immature animals inhabiting the archipelago. Some of these areas are crossed by active shipping lanes increasing the risk of ship-strikes. Given the philopatry in female sperm whales, replacement of impacted whales might be limited. Therefore, the application of mitigation measures to reduce the ship-strike mortality rate seems essential for the conservation of sperm whales in the Canary Islands.Publisher PDFPeer reviewe

    Analysis of Microplastics in Food Samples

    Get PDF
    This chapter presents a compilation of the analytical techniques used to detect and analyze microplastics in food. A detailed description of microplastics found in different samples is provided as well as an estimate of the annual intake of these particles. A total of 22–37 milligrams of microplastics per year was found. The factors that can influence the presence of particles in food, especially table salt, are discussed, showing that a background presence of microplastics in the environment can explain a large amount of experimental data.Support for this work was provided by the CTQ2016-76608-R project from the Ministry of Economy, Industry and Competitiveness (Spain) and by the University of Alicante under the project UAUSTI18-06

    Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    Get PDF
    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps—after acid hydrolysis—as a complex, animal-free serum for growth of mammalian cells in vitro

    Marine mammals and Good Environmental Status: Science, Policy and Society; Challenges and Opportunities

    Get PDF
    The Marine Strategy Framework Directive has become the key instrument for marine conservation in European seas. We review its implementation, focusing on cetacean biodiversity, using the examples of Spain and the Regional Seas Convention, OSPAR. The MSFD has been widely criticised for legal vagueness, lack of coordination, uncertainty about funding, and poor governance; its future role within EU Integrated Maritime Policy remains unclear. Nevertheless, the first stages of the process have run broadly to schedule: current status, environmental objectives and indicators have been described and the design of monitoring programmes is in progress, drawing on experience with other environmental legislation. The MSFD is now entering its critical phase, with lack of funding for monitoring, limited scope for management interventions, and uncertainty about how conservation objectives will be reconciled with the needs of other marine and maritime sectors, being among the main concerns. Clarity in governance, about the roles of the EU, Member States, Regional Seas Conventions and stakeholders, is needed to ensure success. However, even if (as seems likely) good environmental status cannot be achieved by 2020, significant steps will have been taken to place environmental sustainability centre-stage in the development of Integrated Maritime Policy for EU seas.Postprin

    Carrion Availability in Space and Time

    Get PDF
    Introduction Availability of carrion to scavengers is a central issue in carrion ecology and management, and is crucial for understanding the evolution of scavenging behaviour. Compared to live animals, their carcasses are relatively unpredictable in space and time in natural conditions, with a few exceptions (see below, especially Sect. “Carrion Exchange at the Terrestrial-Aquatic Interface”). Carrion is also an ephemeral food resource due to the action of a plethora of consumers, from microorganisms to large vertebrates, as well as to desiccation (i.e., loss of water content; DeVault et al. 2003; Beasley et al. 2012; Barton et al. 2013; Moleón et al. 2014). With a focus on vertebrate carcasses, here we give an overview of (a) the causes that produce carrion, (b) the rate of carrion production, (c) the factors affecting carrion quality, and (d) the distribution of carrion in space and time, both in terrestrial and aquatic environments (including their interface). In this chapter, we will focus on naturally produced carrion, whereas non-natural causes of animal mortality are described in chapter “Human-Mediated Carrion: Effects on Ecological Processes”. However, throughout this chapter we also refer to extensive livestock carrion, because in the absence of strong restrictions such as those imposed in the European Community after the bovine spongiform encephalopathy crisis (Donázar et al. 2009; Margalida et al. 2010), the spatiotemporal availability of carrion of extensive livestock and wild ungulates is similar
    corecore