443 research outputs found
Variable electrostatic transformer: controllable coupling of two charge qubits
We propose and investigate a novel method for the controlled coupling of two
Josephson charge qubits by means of a variable electrostatic transformer. The
value of the coupling capacitance is given by the discretized curvature of the
lowest energy band of a Josephson junction, which can be positive, negative, or
zero. We calculate the charging diagram of the two-qubit system that reflects
the transition from positive to negative through vanishing coupling. We also
discuss how to construct a phase gate making use of the controllable coupling.Comment: final version, to appear in Phys. Rev. Let
Metallic single-electron transistor without traditional tunnel barriers
We report on a new type of single-electron transistor (SET) comprising two
highly resistive Cr thin-film strips (~ 1um long) connecting a 1 um-long Al
island to two Al outer electrodes. These resistors replace small-area oxide
tunnel junctions of traditional SETs. Our transistor with a total asymptotic
resistance of 110 kOhm showed a very sharp Coulomb blockade and reproducible,
deep and strictly e-periodic gate modulation in wide ranges of bias currents I
and gate voltages V_g. In the Coulomb blockade region (|V| < 0.5 mV), we
observed a strong suppression of the cotunneling current allowing appreciable
modulation curves V-V_g to be measured at currents I as low as 100 fA. The
noise figure of our SET was found to be similar to that of typical Al/AlOx/Al
single-electron transistors.Comment: 5 pages incl. 4 fig
Resonant tunneling through a macroscopic charge state in a superconducting SET transistor
We predict theoretically and observe in experiment that the differential
conductance of a superconducting SET transistor exhibits a peak which is a
complete analogue in a macroscopic system of a standard resonant tunneling peak
associated with tunneling through a single quantum state. In particular, in a
symmetric transistor, the peak height is universal and equal to . Away from the resonance we clearly observe the co-tunneling current
which in contrast to the normal-metal transistor varies linearly with the bias
voltage.Comment: 11 pages, 3 figures, Fig. 1 available upon request from the first
autho
Mesoscopic quantum transport: Resonant tunneling in the presence of strong Coulomb interaction
Coulomb blockade phenomena and quantum fluctuations are studied in mesoscopic
metallic tunnel junctions with high charging energies. If the resistance of the
barriers is large compared to the quantum resistance, transport can be
described by sequential tunneling. Here we study the influence of quantum
fluctuations. They are important when the resistance is small or the
temperature very low. A real-time approach is developed which allows the
diagrammatic classification of ``inelastic resonant tunneling'' processes where
different electrons tunnel coherently back and forth between the leads and the
metallic island. With the help of a nonperturbative resummation technique we
evaluate the spectral density which describes the charge excitations of the
system. From it physical quantities of interest like current and average charge
can be deduced. Our main conclusions are: An energy renormalization leads to a
logarithmic temperature dependence of the renormalized system parameters. A
finite lifetime broadening can change the classical picture drastically. It
gives rise to a strong flattening of the Coulomb oscillations for low
resistances, but in the Coulomb blockade regime inelastic electron cotunneling
persists. The temperature where these effects are important are accessible in
experiments.Comment: 24 pages + 23 figures (available by fax or conventional mail, upon
request) tfp-1994-1
Smearing of Coulomb Blockade by Resonant Tunneling
We study the Coulomb blockade in a grain coupled to a lead via a resonant
impurity level. We show that the strong energy dependence of the transmission
coefficient through the impurity level can have a dramatic effect on the
quantization of the grain charge. In particular, if the resonance is
sufficiently narrow, the Coulomb staircase shows very sharp steps even if the
transmission through the impurity at the Fermi energy is perfect. This is in
contrast to the naive expectation that perfect transmission should completely
smear charging effects.Comment: 4 pages, 3 figure
Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains
We study the superconductivity in small grains in the regime when the quantum
level spacing is comparable to the gap . As
is increased, the system crosses over from superconducting
to normal state. This crossover is studied by calculating the dependence of the
ground state energy of a grain on the parity of the number of electrons. The
states with odd numbers of particles carry an additional energy ,
which shows non-monotonic dependence on . Our predictions
can be tested experimentally by studying the parity-induced alternation of
Coulomb blockade peak spacings in grains of different sizes.Comment: 4 pages, revtex, multicol.st
Coherent dynamics of a Josephson charge qubit
We have fabricated a Josephson charge qubit by capacitively coupling a
single-Cooper-pair box (SCB) to an electrometer based upon a single-electron
transistor configured for radio-frequency readout (RF-SET). Charge quantization
of 2e is observed and microwave spectroscopy is used to extract the Josephson
and charging energies of the box. We perform coherent manipulation of the SCB
by using very fast DC pulses and observe quantum oscillations in time of the
charge that persist to ~=10ns. The observed contrast of the oscillations is
high and agrees with that expected from the finite E_J/E_C ratio and finite
rise-time of the DC pulses. In addition, we are able to demonstrate nearly 100%
initial charge state polarization. We also present a method to determine the
relaxation time T_1 when it is shorter than the measurement time T_{meas}.Comment: accepted for publication in Phys. Rev.
Cotunneling at resonance for the single-electron transistor
We study electron transport through a small metallic island in the
perturbative regime. Using a recently developed diagrammatic technique, we
calculate the occupation of the island as well as the conductance through the
transistor in forth order in the tunneling matrix elements, a process referred
to as cotunneling. Our formulation does not require the introduction of a
cut-off. At resonance we find significant modifications of previous theories
and good agreement with recent experiments.Comment: 5 pages, Revtex, 5 eps-figure
Rf-induced transport of Cooper pairs in superconducting single electron transistors in a dissipative environment
We investigate low-temperature and low-voltage-bias charge transport in a
superconducting Al single electron transistor in a dissipating environment,
realized as on-chip high-ohmic Cr microstrips. In our samples with relatively
large charging energy values Ec > EJ, where EJ is the energy of the Josephson
coupling, two transport mechanisms were found to be dominating, both based on
discrete tunneling of individual Cooper pairs: Depending on the gate voltage
Vg, either sequential tunneling of pairs via the transistor island (in the open
state of the transistor around the points Qg = CgVg = e mod(2e), where Cg is
the gate capacitance) or their cotunneling through the transistor (for Qg away
of these points) was found to prevail in the net current. As the open states of
our transistors had been found to be unstable with respect to quasiparticle
poisoning, high-frequency gate cycling (at f ~ 1 MHz) was applied to study the
sequential tunneling mechanism. A simple model based on the master equation was
found to be in a good agreement with the experimental data.Comment: 8 pages, 6 figure
- …