115 research outputs found
Multipreconditioned GMRES for Shifted Systems
An implementation of GMRES with multiple preconditioners (MPGMRES) is proposed for solving shifted linear systems with shift-and-invert preconditioners. With this type of preconditioner, the Krylov subspace can be built without requiring the matrix-vector product with the shifted matrix. Furthermore, the multipreconditioned search space is shown to grow only linearly with the number of preconditioners. This allows for a more efficient implementation of the algorithm.
The proposed implementation is tested on shifted systems that arise in computational hydrology and the evaluation of different matrix functions. The numerical results indicate the effectiveness of the proposed approach.U.S. National Science Foundation under grant DMS–1418882 and and by the Department of Energy grant DE–SC00165
Implementation of antimicrobial stewardship interventions recommended by national toolkits in primary and secondary healthcare sectors in England: TARGET and Start Smart Then Focus
Objectives: To assess and compare the implementation of antimicrobial stewardship (AMS) interventions recommended within the national AMS toolkits, TARGET and Start Smart Then Focus, in English primary and secondary healthcare settings in 2014, to determine the prevalence of cross-sector engagement to drive AMS interventions and to propose next steps to improve implementation of AMS. / Methods: Electronic surveys were circulated to all 211 Clinical Commissioning Groups (CCGs; primary sector) and to 146 (out of the 159) Acute Trusts (secondary sector) in England. Response rates were 39% and 68% for the primary and secondary sectors respectively. / Results: The majority of CCGs and Acute Trusts reported reviewing national AMS toolkits formally or informally (60% and 86% respectively). However, only 13% of CCGs and 46% of Acute NHS Trusts had developed an action plan for the implementation of these toolkits. Only 5% of CCGs had antimicrobial pharmacists in post; however the role of specialist antimicrobial pharmacists continued to remain embedded within Acute Trusts with 83% of responding Trusts having an antimicrobial pharmacist at a senior grade. / Conclusions: Review of national AMS toolkits in primary and secondary care is high; however implementation of the toolkits, through the development of action plans to deliver AMS interventions, requires improvement. For the first time, we report the extent of cross-sector and multidisciplinary collaboration to deliver AMS interventions in both primary and secondary care sectors in England. Results highlight that further qualitative and quantitative work is required to explore mutual benefits and promote best practice. Antimicrobial pharmacists remain leaders for implementing AMS interventions across both primary and secondary healthcare sectors
Improving feedback of surveillance data on antimicrobial consumption, resistance and stewardship in England: putting the data at your Fingertips.
The provision of better access to and use of surveillance data is a key component of the UK 5 Year Antimicrobial Resistance (AMR) Strategy Since April 2016, PHE has made data on practice (infection prevention and control; antimicrobial stewardship) and outcome (prevalence of AMR, antibiotic use and healthcare-associated infections) available through Fingertips, a publicly accessible web tool (https://fingertips.phe.org.uk/profile/amr-local-indicators). Fingertips provides access to a wide range of public health data presented as thematic profiles, with the above data being available through the 'AMR local indicators' profile. Local data on a range of indicators can be viewed at the level of National Health Service acute trusts, Clinical Commissioning Groups or general practitioner practices, all of which can be compared with the corresponding aggregate values for England to allow benchmarking. The data can be viewed in a range of formats including an overview showing counts and rates, interactive maps, spine charts and graphs that show temporal trends over a range of time scales or allow correlations between pairs of indicators. The aim of the AMR local indicators profile on Fingertips is to support the development of local action plans to optimize antibiotic prescribing and reduce AMR and healthcare-associated infections. Provision of access to relevant information in an easy to use format will help local stakeholders, including healthcare staff, commissioners, Directors of Public Health, academics and the public, to benchmark relevant local AMR data and to monitor the impact of local initiatives to tackle AMR over time
Could chiropractors screen for adverse drug events in the community? Survey of US chiropractors
Abstract Background The "Put Prevention into Practice" campaign of the US Public Health Service (USPHS) was launched with the dissemination of the Clinician's Handbook of Preventive Services that recommended standards of clinical care for various prevention activities, including preventive clinical strategies to reduce the risk of adverse drug events. We explored whether nonprescribing clinicians such as chiropractors may contribute to advancing drug safety initiatives by identifying potential adverse drug events in their chiropractic patients, and by bringing suspected adverse drug events to the attention of the prescribing clinicians. Methods Mail survey of US chiropractors about their detection of potential adverse drug events in their chiropractic patients. Results Over half of responding chiropractors (62%) reported having identified a suspected adverse drug event occurring in one of their chiropractic patients. The severity of suspected drug-related events detected ranged from mild to severe. Conclusions Chiropractors or other nonprescribing clinicians may be in a position to detect potential adverse drug events in the community. These detection and reporting mechanisms should be standardized and policies related to clinical case management of suspected adverse drug events occurring in their patients should be developed
Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway
<p><b>Abstract</b></p> <p><b>Background</b></p> <p>It is well known that methamphetamine (METH) is neurotoxic and recent studies have suggested the involvement of neuroinflammatory processes in brain dysfunction induced by misuse of this drug. Indeed, glial cells seem to be activated in response to METH, but its effects on microglial cells are not fully understood. Moreover, it has been shown that cytokines, which are normally released by activated microglia, may have a dual role in response to brain injury. This led us to study the toxic effect of METH on microglial cells by looking to cell death and alterations of tumor necrosis factor-alpha (TNF-α) and interleukine-6 (IL-6) systems, as well as the role played by these cytokines.</p> <p><b>Methods</b></p> <p>We used the N9 microglial cell line, and cell death and proliferation were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and incorporation of bromodeoxyuridine, respectively. The TNF-α and IL-6 content was quantified by enzyme-linked immunosorbent assay, and changes in TNF receptor 1, IL-6 receptor-alpha, Bax and Bcl-2 protein levels by western blotting. Immunocytochemistry analysis was also performed to evaluate alterations in microglial morphology and in the protein expression of phospho-signal transducer and activator of transcription 3 (pSTAT3).</p> <p><b>Results</b></p> <p>METH induced microglial cell death in a concentration-dependent manner (EC<sub>50</sub> = 1 mM), and also led to significant morphological changes and decreased cell proliferation. Additionally, this drug increased TNF-α extracellular and intracellular levels, as well as its receptor protein levels at 1 h, whereas IL-6 and its receptor levels were increased at 24 h post-exposure. However, the endogenous proinflammatory cytokines did not contribute to METH-induced microglial cell death. On the other hand, exogenous low concentrations of TNF-α or IL-6 had a protective effect. Interestingly, we also verified that the anti-apoptotic role of TNF-α was mediated by activation of IL-6 signaling, specifically the janus kinase (JAK)-STAT3 pathway, which in turn induced down-regulation of the Bax/Bcl-2 ratio.</p> <p><b>Conclusions</b></p> <p>These findings show that TNF-α and IL-6 have a protective role against METH-induced microglial cell death via the IL-6 receptor, specifically through activation of the JAK-STAT3 pathway, with consequent changes in pro- and anti-apoptotic proteins.</p
Chronic Methamphetamine Administration Causes Differential Regulation of Transcription Factors in the Rat Midbrain
Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning
Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens
Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further
Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats
Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)–denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (± 1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also caused significant increases in 5-HIAA/5-HT ratios on the DA-depleted side
Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders
Strong genetic evidence implicates mutations and polymorphisms in the gene Disrupted-In-Schizophrenia-1 (DISC1) as risk factors for both schizophrenia and mood disorders. Recent studies have shown that DISC1 has important functions in both brain development and adult brain function. We have described earlier a transgenic mouse model of inducible expression of mutant human DISC1 (hDISC1) that acts in a dominant-negative manner to induce the marked neurobehavioral abnormalities. To gain insight into the roles of DISC1 at various stages of neurodevelopment, we examined the effects of mutant hDISC1 expressed during (1) only prenatal period, (2) only postnatal period, or (3) both periods. All periods of expression similarly led to decreased levels of cortical dopamine (DA) and fewer parvalbumin-positive neurons in the cortex. Combined prenatal and postnatal expression produced increased aggression and enhanced response to psychostimulants in male mice along with increased linear density of dendritic spines on neurons of the dentate gyrus of the hippocampus, and lower levels of endogenous DISC1 and LIS1. Prenatal expression only resulted in smaller brain volume, whereas selective postnatal expression gave rise to decreased social behavior in male mice and depression-like responses in female mice as well as enlarged lateral ventricles and decreased DA content in the hippocampus of female mice, and decreased level of endogenous DISC1. Our data show that mutant hDISC1 exerts differential effects on neurobehavioral phenotypes, depending on the stage of development at which the protein is expressed. The multiple and diverse abnormalities detected in mutant DISC1 mice are reminiscent of findings in major mental diseases
2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease
The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011
- …