8,731 research outputs found
Rigorous theory of nuclear fusion rates in a plasma
Real-time thermal field theory is used to reveal the structure of plasma
corrections to nuclear reactions. Previous results are recovered in a fashion
that clarifies their nature, and new extensions are made. Brown and Yaffe have
introduced the methods of effective quantum field theory into plasma physics.
They are used here to treat the interesting limiting case of dilute but very
highly charged particles reacting in a dilute, one-component plasma. The highly
charged particles are very strongly coupled to this background plasma. The
effective field theory proves that this mean field solution plus the one-loop
term dominate; higher loop corrections are negligible even though the problem
involves strong coupling. Such analytic results for very strong coupling are
rarely available, and they can serve as benchmarks for testing computer models.Comment: 4 pages and 2 figures, presented at SCCS 2005, June 20-25, Moscow,
Russi
Connection between effective-range expansion and nuclear vertex constant or asymptotic normalization coefficient
Explicit relations between the effective-range expansion and the nuclear
vertex constant or asymptotic normalization coefficient (ANC) for the virtual
decay are derived for an arbitrary orbital momentum together with
the corresponding location condition for the () bound-state energy. They
are valid both for the charged case and for the neutral case. Combining these
relations with the standard effective-range function up to order six makes it
possible to reduce to two the number of free effective-range parameters if an
ANC value is known from experiment. Values for the scattering length, effective
range, and form parameter are determined in this way for the O+,
and He collisions in partial waves where a bound state
exists by using available ANCs deduced from experiments. The resulting
effective-range expansions for these collisions are valid up to energies larger
5 MeV.Comment: 17 pages, 6 figure
Searching for low mass objects around nearby dMe radio stars
Nearby M-dwarfs are best suited for searches of low mass companions. VLBI
phase-referencing observations with sensitive telescopes are able to detect
radio star flux-densities of tenths of mJy as well as to position the star on
the sky with submilliarcsecond precision. We have initiated a long-term
observational program, using EVN telescopes in combination with NASA DSN
dishes, to revisit the kinematics of nearby, single M dwarfs. The precision of
the astrometry allows us to search for possible companions with masses down to
1 Jupiter mass. In this contribution we report preliminary results of the first
observation epochs, in which we could detect some of the radio stars included
in our program.Comment: Proceedings of the 6th European VLBI Network Symposium, Ros E.,
Porcas R.W., Lobanov A.P., & Zensus J.A. (eds.), MPIfR, Bonn, Germany, p.
255-258 (2002). 4 pages, 3 figures, needs evn2002.cl
Brueckner-Hartree-Fock study of circular quantum dots
We calculate ground state energies in the Brueckner-Hartree-Fock theory for
electrons (with ) confined to a circular quantum dot and in
presence of a static magnetic field. Comparison with the predictions of
Hartree-Fock, local-spin-density and exact configuration-interaction theories
is made. We find that the correlations taken into account in
Brueckner-Hartree-Fock calculations give an important contribution to the
ground state energies, specially in strongly confined dots. In this
high-density range, corresponding in practice to self-assembled quantum dots,
the results of Brueckner-Hartree-Fock calculations are close to the exact
values and better than those obtained in the local-spin-density approximation.Comment: Regular articl
Recommended from our members
Natural History of the Central Coast Bioregion
Whether one drives the Big Sur coastline, or stands at the foot of a giant coast redwood (Sequoia sempervirens) or in the shade of an ancient valley oak (Quercus lobata), it is clear that California’s Central Coast Bioregion embodies exceptional biological diversity and natural beauty. Extending from the southwest corner of San Joaquin County south to northern Ventura County, the bioregion is bounded on the west by the Pacific Ocean and on the east by the San Joaquin Valley, Carrizo Plains, and the interior Transverse Ranges. Across the bioregion’s 15,000 square miles (9% of California’s area), physical and biological processes, combined with time and human actions, have resulted in a broad range of ecosystems, each harboring distinct assemblages of plants and animals
Results of the Australian geodetic VLBI experiment
The 250-2500 km baseline vectors between radio telescopes located at Tidbinbilla (DSS43) near Canberra, Parkes, Fleurs (X3) near Sydney, Hobart and Alice Springs were determined from radio interferometric observations of extragalactic sources. The observations were made during two 24-hour sessions on 26 April and 3 May 1982, and one 12-hour night-time session on 28 April 1982. The 275 km Tidbinbilla - Parkes baseline was measured with an accuracy of plus or minus 6 cm. The remaining baselines were measured with accuracies ranging from 15 cm to 6 m. The higher accuracies were achieved for the better instrumented sites of Tidbinbilla, Parkes and Fleurs. The data reduction technique and results of the experiment are discussed
Conscious Processing During Retrieval Can Occur in Early and Late Visual Regions
Previous evidence has suggested a functional-anatomic dissociation between conscious and nonconscious processing during retrieval where early visual regions BA17/18 are associated with nonconscious processing and late visual regions BA19/37 are associated with conscious processing. However, evidence for this dissociation has only been observed using a limited number of experimental paradigms. In the present functional magnetic resonance imaging (fMRI) study, we tested the hypothesis that conscious processing during retrieval can occur in BA17/18 using memorial paradigms that recruited processing in these early visual regions. During the encoding phase of Experiment 1, abstract shapes with colored and oriented internal lines were presented to the left and right of fixation. During the retrieval phase, old shapes and new shapes were presented at fixation and participants classified each item as “old-left”, “old-right”, or “new”. The contrast of spatial memory-hits>spatial memory-misses (with accurate item memory) produced activity in BA17/18. During the encoding phase of Experiment 2, abstract shapes with colored and oriented internal lines were presented at fixation. During the retrieval phase, old shapes, changed shapes (with the same outline but different colored and oriented internal lines), and new shapes were presented at fixation and participants made an old-new classification during runs with a specific retrieval orientation or a non-specific retrieval orientation. Critically, the contrast of old-hits>old-misses during specific retrieval orientation produced activity in BA17/18. The results of the present experiments support the hypothesis that conscious processing during retrieval can occur in BA17/18.Psycholog
The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited
The charged particle stopping power in a highly ionized and weakly to
moderately coupled plasma has been calculated to leading and next-to-leading
order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas
behind this calculation, we use a Fokker-Planck equation derived by BPS to
compute the electron-ion energy partitioning of a charged particle traversing a
plasma. The motivation for this application is ignition for inertial
confinement fusion -- more energy delivered to the ions means a better chance
of ignition, and conversely. It is therefore important to calculate the
fractional energy loss to electrons and ions as accurately as possible, as this
could have implications for the Laser Megajoule (LMJ) facility in France and
the National Ignition Facility (NIF) in the United States. The traditional
method by which one calculates the electron-ion energy splitting of a charged
particle traversing a plasma involves integrating the stopping power dE/dx.
However, as the charged particle slows down and becomes thermalized into the
background plasma, this method of calculating the electron-ion energy splitting
breaks down. As a result, the method suffers a systematic error of order T/E0,
where T is the plasma temperature and E0 is the initial energy of the charged
particle. In the case of DT fusion, for example, this can lead to uncertainties
as high as 10% or so. The formalism presented here is designed to account for
the thermalization process, and in contrast, it provides results that are
near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical
Society meeting on plasma physic
Low frequency VLBI in space using GAS-Can satellites: Report on the May 1987 JPL Workshop
Summarized are the results of a workshop held at JPL on May 28 and 29, 1987, to study the feasibility of using small, very inexpensive spacecraft for a low-frequency radio interferometer array. Many technical aspects of a mission to produce high angular resolution images of the entire sky at frequencies from 2 to 20 MHz were discussed. The workshop conclusion was that such a mission was scientifically valuable and technically practical. A useful array could be based on six or more satellites no larger than those launched from Get-Away-Special canisters. The cost of each satellite could be $1-2M, and the mass less than 90 kg. Many details require further study, but as this report shows, there is good reason to proceed. No fundamental problems have been discovered involving the use of untraditional, very inexpensive spacecraft for this type of mission
- …
