1,291 research outputs found
Spin-dynamic field coupling in strongly THz driven semiconductors : local inversion symmetry breaking
We study theoretically the optics in undoped direct gap semiconductors which
are strongly driven in the THz regime. We calculate the optical sideband
generation due to nonlinear mixing of the THz field and the near infrared
probe. Starting with an inversion symmetric microscopic Hamiltonian we include
the THz field nonperturbatively using non-equilibrium Green function
techniques. We find that a self induced relativistic spin-THz field coupling
locally breaks the inversion symmetry, resulting in the formation of odd
sidebands which otherwise are absent.Comment: 8 pages, 6 figure
First Principles Study of Zn-Sb Thermoelectrics
We report first principles LDA calculations of the electronic structure and
thermoelectric properties of -ZnSb. The material is found
to be a low carrier density metal with a complex Fermi surface topology and
non-trivial dependence of Hall concentration on band filling. The band
structure is rather covalent, consistent with experimental observations of good
carrier mobility. Calculations of the variation with band filling are used to
extract the doping level (band filling) from the experimental Hall number. At
this band filling, which actually corresponds to 0.1 electrons per 22 atom unit
cell, the calculated thermopower and its temperature dependence are in good
agreement with experiment. The high Seebeck coefficient in a metallic material
is remarkable, and arises in part from the strong energy dependence of the
Fermiology near the experimental band filling. Improved thermoelectric
performance is predicted for lower doping levels which corresponds to higher Zn
concentrations.Comment: 5 pages, 6 figure
Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection
HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIVâ1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection
The causal structure of dynamical charged black holes
We study the causal structure of dynamical charged black holes, with a
sufficient number of massless fields, using numerical simulations. Neglecting
Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature
singularity due to mass inflation. When we include Hawking radiation, the inner
horizon becomes space-like and is separated from the Cauchy horizon, which is
parallel to the out-going null direction. Since a charged black hole must
eventually transit to a neutral black hole, we studied the neutralization of
the black hole and observed that the inner horizon evolves into a space-like
singularity, generating a Cauchy horizon which is parallel to the in-going null
direction. Since the mass function is finite around the inner horizon, the
inner horizon is regular and penetrable in a general relativistic sense.
However, since the curvature functions become trans-Planckian, we cannot
saymore about the region beyond the inner horizon, and it is natural to say
that there is a 'physical' space-like singularity. However, if we assume an
exponentially large number of massless scalar fields, our results can be
extended beyond the inner horizon. In this case, strong cosmic censorship and
black hole complementarity can be violated.Comment: 23 pages, 23 figure
The Machine Learning Landscape of Top Taggers
Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
Unlike most established methods they rely on low-level input, for instance
calorimeter output. While their network architectures are vastly different,
their performance is comparatively similar. In general, we find that these new
approaches are extremely powerful and great fun.Comment: Yet another tagger included
A double-lined spectroscopic orbit for the young star HD 34700
We report high-resolution spectroscopic observations of the young star HD
34700, which confirm it to be a double-lined spectroscopic binary. We derive an
accurate orbital solution with a period of 23.4877 +/- 0.0013 days and an
eccentricity of e = 0.2501 +/- 0.0068. The stars are found to be of similar
mass (M2/M1 = 0.987 +/- 0.014) and luminosity. We derive also the effective
temperatures (5900 K and 5800 K) and projected rotational velocities (28 km/s
and 22 km/s) of the components. These values of v sin i are much higher than
expected for main-sequence stars of similar spectral type (G0), and are not due
to tidal synchronization. We discuss also the indicators of youth available for
the object. Although there is considerable evidence that the system is young
--strong infrared excess, X-ray emission, Li I 6708 absorption (0.17 Angstroms
equivalent width), H alpha emission (0.6 Angstroms), rapid rotation-- the
precise age cannot yet be established because the distance is unknown.Comment: 17 pages, including 2 figures and 2 tables. Accepted for publication
in AJ, to appear in February 200
Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells
Latently human immunodeficiency virus (HIV)-infected cells are transcriptionally quiescent and invisible to clearance by the immune system. To demonstrate that the latency reversing agent vorinostat (VOR) induces a window of vulnerability in the latent HIV reservoir, defined as the triggering of viral antigen production sufficient in quantity and duration to allow for recognition and clearance of persisting infection, we developed a latency clearance assay (LCA). The LCA is a quantitative viral outgrowth assay (QVOA) that includes the addition of immune effectors capable of clearing cells expressing viral antigen. Here we show a reduction in the recovery of replication-competent virus from VOR exposed resting CD4 T cells following addition of immune effectors for a discrete period.
TAKE HOME MESSAGE: VOR exposure leads to sufficient production of viral protein on the cell surface, creating a window of vulnerability within this latent reservoir in antiretroviral therapy (ART)-suppressed HIV-infected individuals that allows the clearance of latently infected cells by an array of effector mechanisms
Humanized Monoclonal Antibody against West Nile Virus Envelope Protein Administered after Neuronal Infection Protects against Lethal Encephalitis in Hamsters
Humans infected with West Nile virus (WNV) may clinically present with symptoms that are suggestive of neurological infection. Nearly all treatments of WNV disease have been effective in animal models only if administered before or soon after viral challenge. Here, we evaluated whether a potent neutralizing anti-WNV humanized monoclonal antibody (MAb), hE16, could improve the course of disease in a hamster model when administered after the virus had infected neurons in the brain. Five days after viral injection, WNV was detected in the brains of hamsters by cytopathic assay, quantitative reverse-transcription polymerase chain reaction, and immunohistochemical staining of WNV envelope in neurons. Notably, 80%â90% of the hamsters treated 5 days after viral injection by intraperitoneal injection with hE16 survived the disease, compared with 37% of the placebo-treated hamsters (P \u3c= .001). The hamsters that received hE16 directly in the brain also exhibited markedly improved survival rates, compared with those in the placebo-treated hamsters. In prospective experiments, hamsters with high levels of infectious WNV in their cerebrospinal fluid were also protected by hE16 when administered 5 days after viral injection. These experiments suggest that humanized MAbs with potent neutralizing activity are a possible treatment for human patients after WNV has infected neurons in the central nervous system
Calculation of magnetic anisotropy energy in SmCo5
SmCo5 is an important hard magnetic material, due to its large magnetic
anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using
density functional theory (DFT) calculations where the Sm f-bands, which are
difficult to include in DFT calculations, have been treated within the LDA+U
formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming
from an interplay between the crystal field and the spin-orbit coupling. We
found that both are of similar strengths, unlike some other Sm compounds,
leading to a partial quenching of the orbital moment (f-states cannot be
described as either pure lattice harmonics or pure complex harmonics), an
optimal situation for enhanced MAE. A smaller portion of the MAE can be
associated with the Co-d band anisotropy, related to the peak in the density of
states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u.,
agrees reasonably with the experimental value of 13-16 meV/f.u., and the
calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees
with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.
- âŠ