113,149 research outputs found

    Averages and moments associated to class numbers of imaginary quadratic fields

    Full text link
    For any odd prime ℓ\ell, let hℓ(−d)h_\ell(-d) denote the ℓ\ell-part of the class number of the imaginary quadratic field Q(−d)\mathbb{Q}(\sqrt{-d}). Nontrivial pointwise upper bounds are known only for ℓ=3\ell =3; nontrivial upper bounds for averages of hℓ(−d)h_\ell(-d) have previously been known only for ℓ=3,5\ell =3,5. In this paper we prove nontrivial upper bounds for the average of hℓ(−d)h_\ell(-d) for all primes ℓ≥7\ell \geq 7, as well as nontrivial upper bounds for certain higher moments for all primes ℓ≥3\ell \geq 3.Comment: 26 pages; minor edits to exposition and notation, to agree with published versio

    The persistence of wishful thinking: Response to "Updated thinking on positivity ratios"

    Full text link
    This is a response to Barbara Fredrickson's comment [American Psychologist 68, 814-822 (2013)] on our article arXiv:1307.7006. We analyze critically the renewed claims made by Fredrickson (2013) concerning positivity ratios and "flourishing", and attempt to disentangle some conceptual confusions; we also address the alleged empirical evidence for nonlinear effects. We conclude that there is no evidence whatsoever for the existence of any "tipping points", and only weak evidence for the existence of any nonlinearity of any kind. Our original concern, that the application of advanced mathematical techniques in psychology and related disciplines may not always be appropriate, remains undiminished.Comment: LaTeX2e, 10 pages including 6 Postscript figure

    Positive psychology and romantic scientism: Reply to comments on Brown, Sokal, & Friedman (2013)

    Full text link
    This is a response to five comments [American Psychologist 69, 626-629 and 632-635 (2014)] on our article arXiv:1307.7006.Comment: PDF, 9 page

    Rigorous theory of nuclear fusion rates in a plasma

    Full text link
    Real-time thermal field theory is used to reveal the structure of plasma corrections to nuclear reactions. Previous results are recovered in a fashion that clarifies their nature, and new extensions are made. Brown and Yaffe have introduced the methods of effective quantum field theory into plasma physics. They are used here to treat the interesting limiting case of dilute but very highly charged particles reacting in a dilute, one-component plasma. The highly charged particles are very strongly coupled to this background plasma. The effective field theory proves that this mean field solution plus the one-loop term dominate; higher loop corrections are negligible even though the problem involves strong coupling. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models.Comment: 4 pages and 2 figures, presented at SCCS 2005, June 20-25, Moscow, Russi
    • …
    corecore