10 research outputs found

    EUFRIN apple rootstock trials : first results across Europe

    No full text
    In 2017, two multi-location apple rootstock trials were established at 16 sites in 12 European countries. The evaluations are performed by members of the EUFRIN (European Fruit Research Institute Network) Apple & Pear Variety & Rootstock Testing Working Group. Two separate trials were arranged, grouping rootstocks into dwarf and semi-dwarf rootstocks according to the expected vigour; ‘Galaval’ was used as scion cultivar. The trial of dwarf rootstocks includes ‘G.11’ and ‘G.41’ (US), ‘EM_02’, ‘EM_03’, ‘EM_04’, ‘EM_05’ and ‘EM_06’ (UK), ‘62-396-B10®‘ (Russia), ‘P 67’ (Poland), ‘PFR4’ and ‘PFR5’ (New Zealand) and ‘Cepiland-Pajam®2’ as control. The trial of semi-dwarf rootstocks includes ‘G.202’ and ‘G.935’ (US), ‘PFR1’ and ‘PFR3’ (New Zealand), ‘EM_01’ (UK) and ‘G.11’ as a control for both trials. Part of the rootstocks (from dwarf and semi-dwarf rootstock trials) was planted in replanting conditions to test their tolerance to apple replant disease. All test trees came from the same nursery, and a common standardised evaluation protocol was used. Based on preliminary results averaged across sites, dwarf rootstocks can be ranked in terms of vigour in the following order: ‘EM_04’ < ‘EM_03’, ‘EM_05’ < ‘62-396-B10®’, ‘P 67’, ‘EM_02’, ‘G.11’ < ‘G.41’, ‘Cepiland-Pajam®2’ < ‘EM_06’, ‘PFR4’ < ‘PFR5’. On average, semi-dwarf rootstocks can be ranked in terms of vigour in the following order: ‘G11’ < ‘G.935’, ‘G.202’ < ‘PFR3’, ‘EM_01’ < ‘PFR1’. The highest cumulative yield in the young orchard was registered for trees on ‘PFR5’, ‘PFR4’, ‘G.11’, ‘G.41’, ‘Cepiland-Pajam®2’ and ‘EM_02’, while the lowest production was found for trees on ‘EM_04’. In the group of semi-dwarf rootstocks, the highest yield was on ‘PFR3’, ‘G.935’ and ‘PFR1’. Rootstocks also had a significant effect on fruit weight and fruit quality parameters. Results from the young orchards revealed interactions between sites and rootstock, potentially leading to site-specific rootstock choice based on the combination of rootstock, soil conditions and climate
    corecore