2,422 research outputs found
An Algorithmic Framework for Strategic Fair Division
We study the paradigmatic fair division problem of allocating a divisible
good among agents with heterogeneous preferences, commonly known as cake
cutting. Classical cake cutting protocols are susceptible to manipulation. Do
their strategic outcomes still guarantee fairness?
To address this question we adopt a novel algorithmic approach, by designing
a concrete computational framework for fair division---the class of Generalized
Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic
properties of algorithms that operate in this model. The class of GCC protocols
includes the most important discrete cake cutting protocols, and turns out to
be compatible with the study of fair division among strategic agents. In
particular, GCC protocols are guaranteed to have approximate subgame perfect
Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule
is flexible. We further observe that the (approximate) equilibria of
proportional GCC protocols---which guarantee each of the agents a
-fraction of the cake---must be (approximately) proportional. Finally, we
design a protocol in this framework with the property that its Nash equilibrium
allocations coincide with the set of (contiguous) envy-free allocations
The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?
Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees
Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was
a complex region containing current helicity flux of opposite signs. The main
positive sunspots were dominated by negative helicity fields, while positive
helicity patches persisted both inside and around the main positive sunspots.
Based on a comparison of two days of deduced current helicity density,
pronounced changes were noticed which were associated with the occurrence of an
X10 flare that peaked at 20:49 UT, 2003 October 29. The average current
helicity density (negative) of the main sunspots decreased significantly by
about 50. Accordingly, the helicity densities of counter-helical patches
(positive) were also found to decay by the same proportion or more. In
addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100
keV energy range. The cores of these two HXR footpoints were adjacent to the
positions of two patches with positive current helicity which disappeared after
the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted
from reconnection between magnetic flux tubes having opposite current helicity.
Finally, the global decrease of current helicity in AR 10486 by ~50% can be
understood as the helicity launched away by the halo coronal mass ejection
(CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
A Discrete and Bounded Envy-free Cake Cutting Protocol for Four Agents
We consider the well-studied cake cutting problem in which the goal is to
identify a fair allocation based on a minimal number of queries from the
agents. The problem has attracted considerable attention within various
branches of computer science, mathematics, and economics. Although, the elegant
Selfridge-Conway envy-free protocol for three agents has been known since 1960,
it has been a major open problem for the last fifty years to obtain a bounded
envy-free protocol for more than three agents. We propose a discrete and
bounded envy-free protocol for four agents
Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness
Since articular cartilage has a limited potential for spontaneous healing, various techniques are employed to repair cartilage lesions. Acrylate-based double-network (DN) hydrogels containing ~90% water have shown promising properties as repair materials for skeletal system soft tissues. Although their mechanical properties approach those of native cartilage, the critical factor—stiffness—of DN-gels does not equal the stiffness of articular cartilage. This study investigated whether revised PAMPS/PAAm compositions with lower water content result in stiffness parameters closer to cartilage. DN-gels containing 61, 86 and 90% water were evaluated using two non-destructive, mm-scale indentation test modes: fast-impact (FI) and slow-sinusoidal (SS) deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. The dynamic modulus increased with decreasing water content in both testing modes. In the 61% water DN-gel, the modulus resembled that of cartilage (FI-mode: DN-gel = 12, cartilage = 17; SS-mode: DN-gel = 4, cartilage = 1.7MPa). Loss angle increased with decreasing water content in fast-impact, but not in slow-sinusoidal deformation. However, loss angle was still much lower than cartilage (FI: DN-gel = 5, cartilage = 11; SS: DN-gel = 10, cartilage = 32°), indicating somewhat less ability to dissipate energy. Overall, results show that it is possible to adapt DN-gel composition to produce dynamic stiffness properties close to normal articular cartilag
Fast algorithm for calculating two-photon absorption spectra
We report a numerical calculation of the two-photon absorption coefficient of
electrons in a binding potential using the real-time real-space higher-order
difference method. By introducing random vector averaging for the intermediate
state, the task of evaluating the two-dimensional time integral is reduced to
calculating two one-dimensional integrals. This allows the reduction of the
computation load down to the same order as that for the linear response
function. The relative advantage of the method compared to the straightforward
multi-dimensional time integration is greater for the calculation of non-linear
response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March,
199
Sharpenings of Li's criterion for the Riemann Hypothesis
Exact and asymptotic formulae are displayed for the coefficients
used in Li's criterion for the Riemann Hypothesis. For we obtain
that if (and only if) the Hypothesis is true,
(with and explicitly given, also for the case of more general zeta or
-functions); whereas in the opposite case, has a non-tempered
oscillatory form.Comment: 10 pages, Math. Phys. Anal. Geom (2006, at press). V2: minor text
corrections and updated reference
A simple environment-dependent overlap potential and Cauchy violation in solid argon
We develop an analytic and environment-dependent interatomic potential for
the overlap repulsion in solid argon, based on an approximate treatment of the
non-orthogonal Tight-Binding theory for the closed-shell systems. The present
model can well reproduce the observed elastic properties of solid argon
including Cauchy violation at high pressures, yet very simple. A useful and
novel analysis is given to show how the elastic properties are related to the
environment-dependence incorporated into a generic pairwise potential. The
present study has a close link to the broad field of computational materials
science, in which the inclusion of environment dependence in short-ranged
repulsive part of a potential model is sometimes crucial in predicting the
elastic properties correctly.Comment: 10 pages, 3 figure
Recommended from our members
The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis
The number of vehicles in China has been increasing rapidly. We evaluate the impact of current and possible future vehicle emissions from China on Asian air quality. We modify the Regional Emission Inventory in Asia (REAS) for China's road transport sector in 2000 using updated Chinese data for the number of vehicles, annual mileage, and emission factors. We develop two scenarios for 2020: a scenario where emission factors remain the same as they were in 2000 (No-Policy, NoPol), and a scenario where Euro 3 vehicle emission standards are applied to all vehicles (except motorcycles and rural vehicles). The Euro 3 scenario is an approximation of what may be the case in 2020 as, starting in 2008, all new vehicles in China (except motorcycles) were required to meet the Euro 3 emission standards. Using the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem), we examine the regional air quality response to China's vehicle emissions in 2000 and in 2020 for the NoPol and Euro 3 scenarios. We evaluate the 2000 model results with observations in Japan, China, Korea, and Russia. Under NoPol in 2020, emissions of carbon monoxide (CO), nitrogen oxides (NO<sub>x</sub>), non-methane volatile organic compounds (NMVOCs), black carbon (BC), and organic carbon (OC) from China's vehicles more than double compared to the 2000 baseline. If all vehicles meet the Euro 3 regulations in 2020, however, these emissions are reduced by more than 50% relative to NoPol. The implementation of stringent vehicle emission standards leads to a large, simultaneous reduction of the surface ozone (O<sub>3</sub>) mixing ratios and particulate matter (PM<sub>2.5</sub>) concentrations. In the Euro 3 scenario, surface O<sub>3</sub> is reduced by more than 10 ppbv and surface PM<sub>2.5</sub> is reduced by more than 10 μg m<sup>−3</sup> relative to NoPol in Northeast China in all seasons. In spring, surface O<sub>3</sub> mixing ratios and PM<sub>2.5</sub> concentrations in neighboring countries are also reduced by more than 3 ppbv and 1 μg m<sup>−3</sup>, respectively. We find that effective regulation of China's road transport sector will be of significant benefit for air quality both within China and across East Asia as well
The discovery of WASP-151b, WASP-153b, WASP-156b: Insights on giant planet migration and the upper boundary of the Neptunian desert
To investigate the origin of the features discovered in the exoplanet population, the knowledge of exoplanets’ mass and radius with a good precision (≲10%) is essential. To achieve this purpose the discovery of transiting exoplanets around bright stars is of prime interest. In this paper, we report the discovery of three transiting exoplanets by the SuperWASP survey and the SOPHIE spectrograph with mass and radius determined with a precision better than 15%. WASP-151b and WASP-153b are two hot Saturns with masses, radii, densities and equilibrium temperatures of 0.31−0.03+0.04 MJ, 1.13−0.03+0.03 RJ, 0.22−0.02+0.03 ρJ and 1290−10+20 K, and 0.39−0.02+0.02 MJ, 1.55−0.08+0.10 RJ, 0.11−0.02+0.02 ρJ and 1700−40+40 K, respectively. Their host stars are early G type stars (with mag V ~ 13) and their orbital periods are 4.53 and 3.33 days, respectively. WASP-156b is a super-Neptune orbiting a K type star (mag V = 11.6). It has a mass of 0.128−0.009+0.010 MJ, a radius of 0.51−0.02+0.02 RJ, a density of 1.0−0.1+0.1 ρJ, an equilibrium temperature of 970−20+30 K and an orbital period of 3.83 days. The radius of WASP-151b appears to be only slightly inflated, while WASP-153b presents a significant radius anomaly compared to a recently published model. WASP-156b, being one of the few well characterized super-Neptunes, will help to constrain the still debated formation of Neptune size planets and the transition between gas and ice giants. The estimates of the age of these three stars confirms an already observed tendency for some stars to have gyrochronological ages significantly lower than their isochronal ages. We propose that high eccentricity migration could partially explain this behavior for stars hosting a short period planet. Finally, these three planets also lie close to (WASP-151b and WASP-153b) or below (WASP-156b) the upper boundary of the Neptunian desert. Their characteristics support that the ultra-violet irradiation plays an important role in this depletion of planets observed in the exoplanet population
- …
