3,641 research outputs found

    Inhomogeneous distribution of mercury on the surfaces of rapidly rotating HgMn stars

    Full text link
    Starspots are usually associated with the action of magnetic fields at the stellar surfaces. However, recently an inhomogeneous chemical distribution of mercury was found for the mercury-manganese (HgMn) star alpha And -- a well-established member of a non-magnetic subclass of the chemically peculiar stars of the upper main sequence. In this study we present first results of the high-resolution survey of the HgII 3984 resonance line in the spectra of rapidly rotating HgMn stars with atmospheric parameters similar to those of alpha And. We use spectrum synthesis modelling and take advantage of the Doppler resolution of the stellar surfaces to probe horizontal structure of mercury distribution. Clear signatures of spots are found in the HgII 3984 line profiles of HR 1185 and HR 8723. Two observations of the latter star separated by two days give evidence for the line profile variability. We conclude that inhomogeneous distribution of Hg is a common phenomenon for the rapidly rotating HgMn stars in the 13000--13800 K effective temperature range independently of the stellar evolutionary stage. These results establish existence of a new class of spectrum variable spotted B-type stars. It is suggested that the observed Hg inhomogeneities arise from dynamical instabilities in the chemical diffusion processes and are unrelated to magnetic phenomena.Comment: 6 pages, 3 figures, accepted by Astronomy & Astrophysic

    Kink-antikink interactions in the double sine-Gordon equation and the problem of resonance frequencies

    Full text link
    We studied the kink-antikink collision process for the "double sine-Gordon" (DSG) equation in 1+1 dimensions at different values of the potential parameter R>0R>0. For small values of RR we discuss the problem of resonance frequencies. We give qualitative explanation of the frequency shift in comparison with the frequency of the discrete level in the potential well of isolated kink. We show that in this region of the parameter RR the effective long-range interaction between kink and antikink takes place.Comment: 9 pages, LaTeX, 4 figures (eps

    The Largest Russian Optical Telescope BTA: Current Status and Modernization Prospects

    Full text link
    The Russian 6-m telescope (BTA), once the largest telescope in the world and now the largest optical telescope in Russia, has been successfully operating for almost 45 years. In this paper we briefly overview the observing methods the facility can currently provide, the ongoing projects on the development of scientific equipment, the status of the telescope among the world's and Russian astronomical communities, our ambitions to attract new users, and the prospects the observatory wishes to realize in the near future.Comment: To be published in: I.I. Romanyuk, I.A. Yakunin, A.F. Valeev, and D.O. Kudryavtsev (eds), Ground-Based Astronomy in Russia. 21st Century, Proceedings of the All-Russian Conference, ISBN: 978-5-6045062-0-

    KKbar molecules with momentum-dependent interactions

    Full text link
    It is shown that the momentum-dependent kaon-antikaon interactions generated via vector meson exchange from the standard SU_V(3) x SU_A(3) interaction Lagrangian lead to a non-local potential in coordinate space that can be incorporated without approximation into a non-relativistic version of the Bethe-Salpeter wave equation containing a radial-dependent effective kaon mass appearing in a fully symmetrized kinetic energy operator, in addition to a local potential. Estimates of the mass and decay widths of f_0(980) and a_0(980), considered as KKbar molecules of isospin 0 and 1, as well as for K^+K^- atomic bound states (kaonium) are presented, and compared with previous studies of a similar nature. It is argued that without a better knowledge of hadronic form factors it is not possible to distinguish between the molecular versus elementary particle models for the structure of the light scalar mesons.Comment: 14 pages, 2 tables, 5 figures. Added subsection on s-channel exchange, additional remarks on the possible effect of gluon exchange, and 1 additional figur

    The variation of the magnetic field of the Ap star HD~50169 over its 29 year rotation period

    Full text link
    Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of the magnetic field of the Ap star HD 50169 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 50169 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO spectra, both newly acquired and from the archive. Radial velocities are also obtained from these spectra. Results. We present the first determination of the rotation period of HD 50169, Prot = (29.04+/-0.82) y. HD 50169 is currently the longest-period Ap star for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of both and have a significant degree of anharmonicity, and there is a definite phase shift between their respective extrema. We confirm that HD 50169 is a wide spectroscopic binary, refine its orbital elements, and suggest that the secondary is probably a dwarf star of spectral type M. Conclusions. The shapes and mutual phase shifts of the derived magnetic variation curves unquestionably indicate that the magnetic field of HD 50169 is not symmetric about an axis passing through its centre. Overall, HD 50169 appears similar to the bulk of the long-period Ap stars.Comment: 10 pages, 3 figures, accepted for publication in A&

    Entanglement induced by a single-mode heat environment

    Get PDF
    A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle the qubits which are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.Comment: 13pages, 3 figure

    The Zel'dovich effect and evolution of atomic Rydberg spectra along the Periodic Table

    Full text link
    In 1959 Ya. B. Zel'dovich predicted that the bound-state spectrum of the non-relativistic Coulomb problem distorted at small distances by a short-range potential undergoes a peculiar reconstruction whenever this potential alone supports a low-energy scattering resonance. However documented experimental evidence of this effect has been lacking. Previous theoretical studies of this phenomenon were confined to the regime where the range of the short-ranged potential is much smaller than Bohr's radius of the Coulomb field. We go beyond this limitation by restricting ourselves to highly-excited s states. This allows us to demonstrate that along the Periodic Table of elements the Zel'dovich effect manifests itself as systematic periodic variation of the Rydberg spectra with a period proportional to the cubic root of the atomic number. This dependence, which is supported by analysis of experimental and numerical data, has its origin in the binding properties of the ionic core of the atom.Comment: 17 pages, 12 figure
    corecore