6 research outputs found

    Dataset of manually measured QT intervals in the electrocardiogram

    Get PDF
    BACKGROUND: The QT interval and the QT dispersion are currently a subject of considerable interest. Cardiac repolarization delay is known to favor the development of arrhythmias. The QT dispersion, defined as the difference between the longest and the shortest QT intervals or as the standard deviation of the QT duration in the 12-lead ECG is assumed to be reliable predictor of cardiovascular mortality. The seventh annual PhysioNet/Computers in Cardiology Challenge, 2006 addresses a question of high clinical interest: Can the QT interval be measured by fully automated methods with accuracy acceptable for clinical evaluations? METHOD: The PTB Diagnostic ECG Database was given to 4 cardiologists and 1 biomedical engineer for manual marking of QRS onsets and T-wave ends in 458 recordings. Each recording consisted of one selected beat in lead II, chosen visually to have minimum baseline shift, noise, and artifact. In cases where no T wave could be observed or its amplitude was very small, the referees were instructed to mark a 'group-T-wave end' taking into consideration leads with better manifested T wave. A modified Delphi approach was used, which included up to three rounds of measurements to obtain results closer to the median. RESULTS: A total amount of 2*5*548 Q-onsets and T-wave ends were manually marked during round 1. To obtain closer to the median results, 8.58 % of Q-onsets and 3.21 % of the T-wave ends had to be reviewed during round 2, and 1.50 % Q-onsets and 1.17 % T-wave ends in round 3. The mean and standard deviation of the differences between the values of the referees and the median after round 3 were 2.43 ± 0.96 ms for the Q-onset, and 7.43 ± 3.44 ms for the T-wave end. CONCLUSION: A fully accessible, on the Internet, dataset of manually measured Q-onsets and T-wave ends was created and presented in additional file: 1 (Table 4) with this article. Thus, an available standard can be used for the development of automated methods for the detection of Q-onsets, T-wave ends and for QT interval measurements

    Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals

    Get PDF
    A three-dimensional dynamic model of the electrical activity of the heart is presented. The model is based on the single dipole model of the heart and is later related to the body surface potentials through a linear model which accounts for the temporal movements and rotations of the cardiac dipole, together with a realistic ECG noise model. The proposed model is also generalized to maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in single and multiple pregnancies. The applicability of the model for the evaluation of signal processing algorithms is illustrated using independent component analysis. Considering the difficulties and limitations of recording long-term ECG data, especially from pregnant women, the model described in this paper may serve as an effective means of simulation and analysis of a wide range of ECGs, including adults and fetuses.Iranian-French Scientific Cooperation ProgramIran Telecommunication Research CenterNational Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant no. R01 EB001659
    corecore