2,069 research outputs found
Pressure-induced diamond to beta-tin transition in bulk silicon: a near-exact quantum Monte Carlo study
The pressure-induced structural phase transition from diamond to beta-tin in
silicon is an excellent test for theoretical total energy methods. The
transition pressure provides a sensitive measure of small relative energy
changes between the two phases (one a semiconductor and the other a semimetal).
Experimentally, the transition pressure is well characterized.
Density-functional results have been unsatisfactory. Even the generally much
more accurate diffusion Monte Carlo method has shown a noticeable fixed-node
error. We use the recently developed phaseless auxiliary-field quantum Monte
Carlo (AFQMC) method to calculate the relative energy differences in the two
phases. In this method, all but the error due to the phaseless constraint can
be controlled systematically and driven to zero. In both structural phases we
were able to benchmark the error of the phaseless constraint by carrying out
exact unconstrained AFQMC calculations for small supercells. Comparison between
the two shows that the systematic error in the absolute total energies due to
the phaseless constraint is well within 0.5 mHa/atom. Consistent with these
internal benchmarks, the transition pressure obtained by the phaseless AFQMC
from large supercells is in very good agreement with experiment.Comment: 9 pages, 5 figure
Haptic guidance improves the visuo-manual tracking of trajectories
BACKGROUND: Learning to perform new movements is usually achieved by
following visual demonstrations. Haptic guidance by a force feedback device is
a recent and original technology which provides additional proprioceptive cues
during visuo-motor learning tasks. The effects of two types of haptic
guidances-control in position (HGP) or in force (HGF)-on visuo-manual tracking
("following") of trajectories are still under debate. METHODOLOGY/PRINCIPALS
FINDINGS: Three training techniques of haptic guidance (HGP, HGF or control
condition, NHG, without haptic guidance) were evaluated in two experiments.
Movements produced by adults were assessed in terms of shapes (dynamic time
warping) and kinematics criteria (number of velocity peaks and mean velocity)
before and after the training sessions. CONCLUSION/SIGNIFICANCE: These results
show that the addition of haptic information, probably encoded in force
coordinates, play a crucial role on the visuo-manual tracking of new
trajectories
Non-equilibrium phase transitions in biomolecular signal transduction
We study a mechanism for reliable switching in biomolecular
signal-transduction cascades. Steady bistable states are created by system-size
cooperative effects in populations of proteins, in spite of the fact that the
phosphorylation-state transitions of any molecule, by means of which the switch
is implemented, are highly stochastic. The emergence of switching is a
nonequilibrium phase transition in an energetically driven, dissipative system
described by a master equation. We use operator and functional integral methods
from reaction-diffusion theory to solve for the phase structure, noise
spectrum, and escape trajectories and first-passage times of a class of minimal
models of switches, showing how all critical properties for switch behavior can
be computed within a unified framework
Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces
Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error
Pressure Dependence of Born Effective Charges, Dielectric Constant and Lattice Dynamics in SiC
The pressure dependence of the Born effective charge, dielectric constant and
zone-center LO and TO phonons have been determined for -SiC by a linear
response method based on the linearized augmented plane wave calculations
within the local density approximation. The Born effective charges are found to
increase nearly linearly with decreasing volume down to the smallest volume
studied, , corresponding to a pressure of about 0.8 Mbar. This
seems to be in contradiction with the conclusion of the turnover behavior
recently reported by Liu and Vohra [Phys.\ Rev.\ Lett.\ {\bf 72}, 4105 (1994)]
for -SiC. Reanalyzing their procedure to extract the pressure dependence of
the Born effective charges, we suggest that the turnover behavior they obtained
is due to approximations in the assumed pressure dependence of the dielectric
constant , the use of a singular set of experimental data
for the equation of state, and the uncertainty in measured phonon frequencies,
especially at high pressure.Comment: 25 pages, revtex, 5 postscript figures appended, to be published in
Phys. Rev.
Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model
The equilibrium structure, energy bands, phonon dispersions, and s- and
d-channel electron-phonon interactions (EPIs) are calculated for the
infinite-layer superconductor CaCuO2 doped with 0.24 holes per CuO2. The LDA
and the linear-response full-potential LMTO method were used. In the
equilibrium structure, oxygen is found to buckle slightly out of the plane and,
as a result, the characters of the energy bands near EF are found to be similar
to those of other optimally doped HTSCs. For the EPI we find lambda(s)=0.4, in
accord with previous LDA calculations for YBa2Cu3O7. This supports the common
belief that the EPI mechanism alone is insufficient to explain HTSC.
Lambda(x^2-y^2) is found to be positive and nearly as large as lambda(s). This
is surprising and indicates that the EPI could enhance some other d-wave
pairing mechanism. Like in YBa2Cu3O7, the buckling modes contribute
significantly to the EPI, although these contributions are proportional to the
static buckling and would vanish for flat planes. These numerical results can
be understood from a generic tight-binding model originally derived from the
LDA bands of YBa2Cu3O7. In the future, the role of anharmonicity of the
buckling-modes and the influence of the spin-fluctuations should be
investigated.Comment: 19 pages, 9 Postscript figures, Late
Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce
The first Stroke Recovery and Rehabilitation Roundtable established a game changing set of new standards for stroke recovery research. Common language and definitions were required to develop an agreed framework spanning the four working groups: translation of basic science, biomarkers of stroke recovery, measurement in clinical trials and intervention development and reporting. This paper outlines the working definitions established by our group and an agreed vision for accelerating progress in stroke recovery research
d_{x^2-y^2} Symmetry and the Pairing Mechanism
An important question is if the gap in the high temperature cuprates has
d_{x^2-y^2} symmetry, what does that tell us about the underlying interaction
responsible for pairing. Here we explore this by determining how three
different types of electron-phonon interactions affect the d_{x^2-y^2} pairing
found within an RPA treatment of the 2D Hubbard model. These results imply that
interactions which become more positive as the momentum transfer increases
favor d_{x^2-y^2} pairing in a nearly half-filled band.Comment: 9 pages and 2 eps figs, uses revtex with epsf, in press, PR
Effects of neutrino oscillations and neutrino magnetic moments on elastic neutrino-electron scattering
We consider elastic antineutrino-electron scattering taking into account
possible effects of neutrino masses and mixing and of neutrino magnetic moments
and electric dipole moments. Having in mind antineutrinos produced in a nuclear
reactor we compute, in particular, the weak-electromagnetic interference terms
which are linear in the magnetic (electric dipole) moments and also in the
neutrino masses. We show that these terms are, however, suppressed compared to
the pure weak and electromagnetic cross section. We also comment upon the
possibility of using the electromagnetic cross section to investigate neutrino
oscillations.Comment: 12 pages, REVTEX file, no figures, submitted to Phys.Rev.
- …
