1,502 research outputs found
Orchestrating learning activities using the CADMOS learning design tool
This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of “separation of concerns” during the design process, via the creation of two models: the conceptual model, which describes the learning activities and the corresponding learning resources, and the flow model, which describes the orchestration of these activities. According to the feedback from an evaluation case study with 36 participants, reported in this paper, CADMOS is a user-friendly tool that allows educational practitioners to design flows of learning activities using a layered approach
Aging dynamics in reentrant ferromagnet: CuCoCl-FeCl graphite bi-intercalation compound
Aging dynamics of a reentrant ferromagnet
CuCoCl-FeCl graphite bi-intercalation compound has
been studied using AC and DC magnetic susceptibility. This compound undergoes
successive transitions at the transition temperatures ( K) and
( K). The relaxation rate exhibits a characteristic
peak at close to a wait time below , indicating that
the aging phenomena occur in both the reentrant spin glass (RSG) phase below
and the ferromagnetic (FM) phase between and . The
relaxation rate () in the FM phase
exhibits two peaks around and a time much shorter than under
the positive -shift aging, indicating a partial rejuvenation of domains. The
aging state in the FM phase is fragile against a weak magnetic-field
perturbation. The time () dependence of around is well approximated by a stretched exponential relaxation:
. The exponent depends on
, , and . The relaxation time () exhibits a
local maximum around 5 K, reflecting a chaotic nature of the FM phase. It
drastically increases with decreasing temperature below .Comment: 16 pages,16 figures, submitted to Physical Review
Depth-varying rupture properties of subduction zone megathrust faults
Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (M_w 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (M_w 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the deeper portion of the megathrusts whereas the largest fault displacements occurred at shallower depths but produced relatively little coherent short-period radiation. We represent these and other depth-varying seismic characteristics with four distinct failure domains extending along the megathrust from the trench to the downdip edge of the seismogenic zone. We designate the portion of the megathrust less than 15 km below the ocean surface as domain A, the region of tsunami earthquakes. From 15 to ∼35 km deep, large earthquake displacements occur over large-scale regions with only modest coherent short-period radiation, in what we designate as domain B. Rupture of smaller isolated megathrust patches dominate in domain C, which extends from ∼35 to 55 km deep. These isolated patches produce bursts of coherent short-period energy both in great ruptures and in smaller, sometimes repeating, moderate-size events. For the 2011 Tohoku earthquake, the sites of coherent teleseismic short-period radiation are close to areas where local strong ground motions originated. Domain D, found at depths of 30–45 km in subduction zones where relatively young oceanic lithosphere is being underthrust with shallow plate dip, is represented by the occurrence of low-frequency earthquakes, seismic tremor, and slow slip events in a transition zone to stable sliding or ductile flow below the seismogenic zone
Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function
Using Monte Carlo simulations, we have studied isothermal aging of
three-dimensional Ising spin-glass model focusing on quasi-equilibrium behavior
of the spin auto-correlation function. Weak violation of the time translational
invariance in the quasi-equilibrium regime is analyzed in terms of {\it
effective stiffness} for droplet excitations in the presence of domain walls.
Within the range of computational time window, we have confirmed that the
effective stiffness follows the expected scaling behavior with respect to the
characteristic length scales associated with droplet excitations and domain
walls, whose growth law has been extracted from our simulated data. Implication
of the results are discussed in relation to experimental works on ac
susceptibilities.Comment: 18 pages, 6 figure
Fluctuation Dissipation Ratio in Three-Dimensional Spin Glasses
We present an analysis of the data on aging in the three-dimensional Edwards
Anderson spin glass model with nearest neighbor interactions, which is well
suited for the comparison with a recently developed dynamical mean field
theory. We measure the parameter describing the violation of the
relation among correlation and response function implied by the fluctuation
dissipation theorem.Comment: LaTeX 10 pages + 4 figures (appended as uuencoded compressed
tar-file), THP81-9
Scaling Law and Aging Phenomena in the Random Energy Model
We study the effect of temperature shift on aging phenomena in the Random
Energy Model (REM). From calculation on the correlation function and simulation
on the Zero-Field-Cooled magnetization, we find that the REM satisfies a
scaling relation even if temperature is shifted. Furthermore, this scaling
property naturally leads to results obtained in experiment and the droplet
theory.Comment: 8 pages, 7 figures, to be submitted to J. Phys. Soc. Jp
The 2 March 2016 Wharton Basin M_w 7.8 earthquake: High stress drop north-south strike-slip rupture in the diffuse oceanic deformation zone between the Indian and Australian Plates
The diffuse deformation zone between the Indian and Australian plates has hosted numerous major and great earthquakes during the seismological record, including the 11 April 2012 M_w 8.6 event, the largest recorded intraplate earthquake. On 2 March 2016, an M_w 7.8 strike-slip faulting earthquake occurred in the northwestern Wharton Basin, in a region bracketed by north-south trending fracture zones with no previously recorded large event nearby. Despite the large magnitude, only minor source finiteness is evident in aftershock locations or resolvable from seismic wave processing including high-frequency P wave backprojections and Love wave directivity analysis. Our analyses indicate that the event ruptured bilaterally on a north-south trending fault over a length of up to 70 km, with rupture speed of ≤ 2 km/s, and a total duration of ~35 s. The estimated stress drop, ~20 MPa, is high, comparable to estimates for other large events in this broad intraplate oceanic deformation zone
Non-linear susceptibility in glassy systems: a probe for cooperative dynamical length scales
We argue that for generic systems close to a critical point, an extended
Fluctuation-Dissipation relation connects the low frequency non-linear (cubic)
susceptibility to the four-point correlation function. In glassy systems, the
latter contains interesting information on the heterogeneity and cooperativity
of the dynamics. Our result suggests that if the abrupt slowing down of glassy
materials is indeed accompanied by the growth of a cooperative length ell, then
the non-linear, 3 omega response to an oscillating field should substantially
increase and give direct information on the temperature (or density) dependence
of ell. The analysis of the non-linear compressibility or the dielectric
susceptibility in supercooled liquids, or the non-linear magnetic
susceptibility in spin-glasses, should give access to a cooperative length
scale, that grows as the temperature is decreased or as the age of the system
increases. Our theoretical analysis holds exactly within the Mode-Coupling
Theory of glasses.Comment: 12 pages, 3 figures; a careful discussion of the spin-glass case in a
field adde
- …
