1,502 research outputs found

    Orchestrating learning activities using the CADMOS learning design tool

    Get PDF
    This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of “separation of concerns” during the design process, via the creation of two models: the conceptual model, which describes the learning activities and the corresponding learning resources, and the flow model, which describes the orchestration of these activities. According to the feedback from an evaluation case study with 36 participants, reported in this paper, CADMOS is a user-friendly tool that allows educational practitioners to design flows of learning activities using a layered approach

    Aging dynamics in reentrant ferromagnet: Cu0.2_{0.2}Co0.8_{0.8}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound

    Full text link
    Aging dynamics of a reentrant ferromagnet Cu0.2_{0.2}Co0.8_{0.8}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound has been studied using AC and DC magnetic susceptibility. This compound undergoes successive transitions at the transition temperatures TcT_{c} (=9.7= 9.7 K) and TRSGT_{RSG} (=3.5= 3.5 K). The relaxation rate S(t)S(t) exhibits a characteristic peak at tcrt_{cr} close to a wait time twt_{w} below TcT_{c}, indicating that the aging phenomena occur in both the reentrant spin glass (RSG) phase below TRSGT_{RSG} and the ferromagnetic (FM) phase between TRSGT_{RSG} and TcT_{c}. The relaxation rate S(t)S(t) (=dχZFC(t)/dlnt=\text{d}\chi_{ZFC}(t)/\text{d}\ln t) in the FM phase exhibits two peaks around twt_{w} and a time much shorter than twt_{w} under the positive TT-shift aging, indicating a partial rejuvenation of domains. The aging state in the FM phase is fragile against a weak magnetic-field perturbation. The time (tt) dependence of χZFC(t)\chi_{ZFC}(t) around ttcrt \approx t_{cr} is well approximated by a stretched exponential relaxation: χZFC(t)exp[(t/τ)1n]\chi_{ZFC}(t) \approx \exp[-(t/\tau)^{1-n}]. The exponent nn depends on twt_{w}, TT, and HH. The relaxation time τ\tau (tcr\approx t_{cr}) exhibits a local maximum around 5 K, reflecting a chaotic nature of the FM phase. It drastically increases with decreasing temperature below TRSGT_{RSG}.Comment: 16 pages,16 figures, submitted to Physical Review

    Depth-varying rupture properties of subduction zone megathrust faults

    Get PDF
    Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (M_w 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (M_w 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the deeper portion of the megathrusts whereas the largest fault displacements occurred at shallower depths but produced relatively little coherent short-period radiation. We represent these and other depth-varying seismic characteristics with four distinct failure domains extending along the megathrust from the trench to the downdip edge of the seismogenic zone. We designate the portion of the megathrust less than 15 km below the ocean surface as domain A, the region of tsunami earthquakes. From 15 to ∼35 km deep, large earthquake displacements occur over large-scale regions with only modest coherent short-period radiation, in what we designate as domain B. Rupture of smaller isolated megathrust patches dominate in domain C, which extends from ∼35 to 55 km deep. These isolated patches produce bursts of coherent short-period energy both in great ruptures and in smaller, sometimes repeating, moderate-size events. For the 2011 Tohoku earthquake, the sites of coherent teleseismic short-period radiation are close to areas where local strong ground motions originated. Domain D, found at depths of 30–45 km in subduction zones where relatively young oceanic lithosphere is being underthrust with shallow plate dip, is represented by the occurrence of low-frequency earthquakes, seismic tremor, and slow slip events in a transition zone to stable sliding or ductile flow below the seismogenic zone

    Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function

    Full text link
    Using Monte Carlo simulations, we have studied isothermal aging of three-dimensional Ising spin-glass model focusing on quasi-equilibrium behavior of the spin auto-correlation function. Weak violation of the time translational invariance in the quasi-equilibrium regime is analyzed in terms of {\it effective stiffness} for droplet excitations in the presence of domain walls. Within the range of computational time window, we have confirmed that the effective stiffness follows the expected scaling behavior with respect to the characteristic length scales associated with droplet excitations and domain walls, whose growth law has been extracted from our simulated data. Implication of the results are discussed in relation to experimental works on ac susceptibilities.Comment: 18 pages, 6 figure

    Fluctuation Dissipation Ratio in Three-Dimensional Spin Glasses

    Full text link
    We present an analysis of the data on aging in the three-dimensional Edwards Anderson spin glass model with nearest neighbor interactions, which is well suited for the comparison with a recently developed dynamical mean field theory. We measure the parameter x(q)x(q) describing the violation of the relation among correlation and response function implied by the fluctuation dissipation theorem.Comment: LaTeX 10 pages + 4 figures (appended as uuencoded compressed tar-file), THP81-9

    Scaling Law and Aging Phenomena in the Random Energy Model

    Full text link
    We study the effect of temperature shift on aging phenomena in the Random Energy Model (REM). From calculation on the correlation function and simulation on the Zero-Field-Cooled magnetization, we find that the REM satisfies a scaling relation even if temperature is shifted. Furthermore, this scaling property naturally leads to results obtained in experiment and the droplet theory.Comment: 8 pages, 7 figures, to be submitted to J. Phys. Soc. Jp

    The 2 March 2016 Wharton Basin M_w 7.8 earthquake: High stress drop north-south strike-slip rupture in the diffuse oceanic deformation zone between the Indian and Australian Plates

    Get PDF
    The diffuse deformation zone between the Indian and Australian plates has hosted numerous major and great earthquakes during the seismological record, including the 11 April 2012 M_w 8.6 event, the largest recorded intraplate earthquake. On 2 March 2016, an M_w 7.8 strike-slip faulting earthquake occurred in the northwestern Wharton Basin, in a region bracketed by north-south trending fracture zones with no previously recorded large event nearby. Despite the large magnitude, only minor source finiteness is evident in aftershock locations or resolvable from seismic wave processing including high-frequency P wave backprojections and Love wave directivity analysis. Our analyses indicate that the event ruptured bilaterally on a north-south trending fault over a length of up to 70 km, with rupture speed of ≤ 2 km/s, and a total duration of ~35 s. The estimated stress drop, ~20 MPa, is high, comparable to estimates for other large events in this broad intraplate oceanic deformation zone

    Non-linear susceptibility in glassy systems: a probe for cooperative dynamical length scales

    Full text link
    We argue that for generic systems close to a critical point, an extended Fluctuation-Dissipation relation connects the low frequency non-linear (cubic) susceptibility to the four-point correlation function. In glassy systems, the latter contains interesting information on the heterogeneity and cooperativity of the dynamics. Our result suggests that if the abrupt slowing down of glassy materials is indeed accompanied by the growth of a cooperative length ell, then the non-linear, 3 omega response to an oscillating field should substantially increase and give direct information on the temperature (or density) dependence of ell. The analysis of the non-linear compressibility or the dielectric susceptibility in supercooled liquids, or the non-linear magnetic susceptibility in spin-glasses, should give access to a cooperative length scale, that grows as the temperature is decreased or as the age of the system increases. Our theoretical analysis holds exactly within the Mode-Coupling Theory of glasses.Comment: 12 pages, 3 figures; a careful discussion of the spin-glass case in a field adde
    corecore