67 research outputs found

    Parents' gender-based attitudes toward marital roles and child rearing: Development and validation of new measures

    Full text link
    Factor analysis of 18 Likert-type items dealing with gender stereotypes about family roles was conducted and yielded two measures: one focused on marital roles and one focussed on child rearing. Respondents were parents of children in the third and fourth grades of a large industrialized city in the Midwest. The sample included 364 families equally divided between middle and lower class with 23% African American and 77% European American. For both scales, more stereotyped scores were obtained by parents who were lower in social status, less educated, full-time homemakers, African Americans, and fathers. Parents' scores related to a separate measure of children's stereotypes and the marital-role attitudes related to actual roles reported by family members. Daughters whose parents obtained less stereotyped scores had a more internal locus of control, showed a trend toward more independent coping skills, and—in the middle class—obtained higher scores on achievement tests.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45608/1/11199_2005_Article_BF01544598.pd

    Correspondence to:

    Get PDF
    This is an electronic version of an article published in Addiction: Complete citation information for the final version of the paper, as published in the print edition of Addiction, is available on the Blackwell Synergy online delivery service, accessible via the journal’s Web site a

    Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reduction therapy in Sanfilippo disease and other mucopolysaccharidoses

    Get PDF
    Sanfilippo disease (mucopolysaccharidosis type III, MPS III) is a severe metabolic disorder caused by accumulation of heparan sulfate (HS), one of glycosaminoglycans (GAGs), due to a genetic defect resulting in a deficiency of GAG hydrolysis. This disorder is characterized as the most severe neurological form of MPS, revealing rapid deterioration of brain functions. Among therapeutic approaches for MPS III, one of the most promising appears to be the substrate reduction therapy (SRT). Genistein (5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) is an isoflavone that has been used in SRT for MPS III. In this report, we tested effects of other flavonoids (apigenin, daidzein, kaempferol and naringenin) on GAG synthesis. Their cytotoxicity and anti-proliferation features were also tested. We found that daidzein and kaempferol inhibited GAG synthesis significantly. Moreover, these compounds were able to reduce lysosomal storage in MPS IIIA fibroblasts. Interestingly, although genistein is believed to inhibit GAG synthesis by blocking the tyrosine kinase activity of the epidermal growth factor receptor, we found that effects of other flavonoids were not due to this mechanism. In fact, combinations of various flavonoids resulted in significantly more effective inhibition of GAG synthesis than the use of any of these compounds alone. These results, together with results published recently by others, suggest that combination of flavonoids can be considered as a method for improvement of efficiency of SRT for MPS III

    Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound

    Get PDF
    Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation (OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure, function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively simple system measuring different parameters using only a small amount of patient's fibroblasts, in glucose free medium, where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI patients, harboring different mutations

    Spheroid-plug model as a tool to study tumor development, angiogenesis, and heterogeneity in vivo

    Get PDF
    Subcutaneous injection of the tumor cell suspension is a simple and commonly used tool for studying tumor development in vivo. However, subcutaneous models poorly resemble tumor complexity due to the fast growth not reflecting the natural course. Here, we describe an application of the new spheroid-plug model to combine the simplicity of subcutaneous injection with improved resemblance to natural tumor progression. Spheroid-plug model relies on in vitro formation of tumor spheroids, followed by injection of single tumor spheroid subcutaneously in Matrigel matrix. In spheroid-plug model, tumors grow slower in comparison to tumors formed by injection of cell suspension as assessed by 3D ultrasonography (USG) and in vivo bioluminescence measurements. The slower tumor growth rate in spheroid-plug model is accompanied by reduced necrosis. The spheroid-plug model ensures increased and more stable vascularization of tumor than classical subcutaneous tumor model as demonstrated by 3D USG Power Doppler examination. Flow cytometry analysis showed that tumors formed from spheroids have enhanced infiltration of endothelial cells as well as hematopoietic and progenitor cells with stem cell phenotype (c-Kit+ and Sca-1+). They also contain more tumor cells expressing cancer stem cell marker CXCR4. Here, we show that spheroid-plug model allows investigating efficiency of anticancer drugs. Treatment of spheroid-plug tumors with known antiangiogenic agent axitinib decreased their size and viability. The antiangiogenic activity of axitinib was higher in spheroid-plug model than in classical model. Our results indicate that spheroid-plug model imitates natural tumor growth and can become a valuable tool for cancer research

    Acute stroke imaging research roadmap II

    Get PDF
    The recent “Advanced Neuroimaging for Acute Stroke Treatment” meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease
    corecore