61 research outputs found
Recommended from our members
Methods for Objective and Subjective Evaluation of Zero-Client Computing
Zero clients are hardware-based devices without a central processing unit (CPU) that deliver virtual desktops (VDs) from remote computing systems to users. We measured the performance of applications accessed through zero clients to study the feasibility of using this approach to provide a desktop-pc experience across a network. Performance evaluation is complicated because monitoring software cannot be downloaded to the zero clients. Therefore, we introduce a new methodology and metric to measure zero-client VD performance that is based on network-traffic analysis. We conducted objective and subjective studies to determine the sensitivity of application-specific metrics to different network conditions. The results show that the packet loss rate (PLR) impacts zero-client performance for some applications such as video streaming. Subjective tests showed a greater user sensitivity to the PLR for video streaming than for image viewing or Skype. A strong correlation was found between the objective and subjective measurements but the rate at which these measurements changed with increasing PLR differed depending on the application.NSF [CNS-1737453]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Unconditional Continuous Variable Dense Coding
We investigate the conditions under which unconditional dense coding can be
achieved using continuous variable entanglement. We consider the effect of
entanglement impurity and detector efficiency and discuss experimental
verification. We conclude that the requirements for a strong demonstration are
not as stringent as previously thought and are within the reach of present
technology
Employing Channel Probing to Derive End-of-Life Service Margins for Optical Spectrum Services
Optical Spectrum as a Service (OSaaS) spanning over multiple transparent
optical network domains, can significantly reduce the investment and
operational costs of the end-to-end service. Based on the black-link approach,
these services are empowered by reconfigurable transceivers and the emerging
disaggregation trend in optical transport networks. This work investigates the
accuracy aspects of the channel probing method used in Generalized Signal to
Noise Ratio (GSNR)-based OSaaS characterization in terrestrial brownfield
systems. OSaaS service margins to accommodate impacts from enabling neighboring
channels and end-of-life channel loads are experimentally derived in a
systematic lab study carried out in the Open Ireland testbed. The applicability
of the lab-derived margins is then verified in the HEAnet production network
using a 400 GHz wide OSaaS. Finally, the probing accuracy is tested by
depleting the GSNR margin through power adjustments utilizing the same 400 GHz
OSaaS in the HEAnet live network. A minimum of 0.92 dB and 1.46 dB of service
margin allocation is recommended to accommodate the impacts of enabling
neighboring channels and end-of-life channel loads. Further 0.6 dB of GSNR
margin should be allocated to compensate for probing inaccuracies
Relationship between eruptions of active-region filaments and associated flares and CMEs
To better understand the dynamical process of active-region filament
eruptions and associated flares and CMEs, we carried out a statistical study of
120 events observed by BBSO, TRACE, and t(SOHO/EIT) from 1998 to 2007 and
combined filament observations with the NOAA's flare reports, MDI magnetograms,
and LASCO data, to investigate the relationship between active-region filament
eruptions and other solar activities. We found that 115 out of 120 filament
eruptions are associated with flares. 56 out of 105 filament eruptions are
found to be associated with CMEs except for 15 events without corresponding
LASCO data. We note the limitation of coronagraphs duo to geometry or
sensitivity, leading to many smaller CMEs that are Earth-directed or well out
of the plane of sky not being detected by near-Earth spacecraft. Excluding
those without corresponding LASCO data, the CME association rate of
active-region filament eruptions clearly increases with X-ray flare class from
about 32% for C-class flares to 100% for X-class flares. The eruptions of
active-region filaments associated with Halo CMEs are often accompanied by
large flares. About 92% events associated with X-class flare are associated
with Halo CMEs. Such a result is due to that the Earth-directed CMEs detected
as Halo CMEs are often the larger CMEs and many of the smaller ones are not
detected because of the geometry and low intensity. The average speed of the
associated CMEs of filament eruptions increases with X-ray flare size from
563.7 km/s for C-class flares to 1506.6 km/s for X-class flares. Moreover, the
magnetic emergence and cancellation play an important role in triggering
filament eruptions. These findings may be instructive to not only in respect to
the modeling of active-region filament eruptions but also in predicting flares
and CMEs.Comment: 19 Pages, 7 figures, Accepted for publication in MNRA
Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling
This review paper outlines background information and covers recent advances
made via the analysis of spectra and images of prominence plasma and the
increased sophistication of non-LTE (ie when there is a departure from Local
Thermodynamic Equilibrium) radiative transfer models. We first describe the
spectral inversion techniques that have been used to infer the plasma
parameters important for the general properties of the prominence plasma in
both its cool core and the hotter prominence-corona transition region. We also
review studies devoted to the observation of bulk motions of the prominence
plasma and to the determination of prominence mass. However, a simple inversion
of spectroscopic data usually fails when the lines become optically thick at
certain wavelengths. Therefore, complex non-LTE models become necessary. We
thus present the basics of non-LTE radiative transfer theory and the associated
multi-level radiative transfer problems. The main results of one- and
two-dimensional models of the prominences and their fine-structures are
presented. We then discuss the energy balance in various prominence models.
Finally, we outline the outstanding observational and theoretical questions,
and the directions for future progress in our understanding of solar
prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a
better resolution in the published version. New version reflects minor
changes brought after proof editin
Overcoming degradation in spatial multiplexing systems with stochastic nonlinear impairments
Single-mode optical fibres now underpin telecommunication systems and have allowed continuous increases in traffic volume and bandwidth demand whilst simultaneously reducing cost- and energy-per-bit over the last 40 years. However, it is now recognised that such systems are rapidly approaching the limits imposed by the nonlinear Kerr effect. To address this, recent research has been carried out into mitigating Kerr nonlinearities to increase the nonlinear threshold and into spatial multiplexing to offer additional spatial pathways. However, given the complexity associated with nonlinear transmission in spatial multiplexed systems subject to random inter-spatial-path nonlinearities it is widely believed that these technologies are mutually exclusive. By investigating the linear and nonlinear crosstalk in few-mode fibres based optical communications, we numerically demonstrate, for the first time, that even in the presence of significant random mixing of signals, substantial performance benefits are possible. To achieve this, the impact of linear mixing on the Kerr nonlinearities should be taken into account using different compensation strategies for different linear mixing regimes. For the optical communication systems studied, we demonstrate that the performance may be more than doubled with the appropriate selection of compensation method for fibre characteristics which match those presented in the literature
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
GreeDi: Energy Efficient Routing Algorithm for Big Data on Cloud
The ever-increasing density in cloud computing parties, i.e. users, services, providers and data centres, has led to a significant exponential growth in: data produced and transferred among the cloud computing parties; network traffic; and the energy consumed by the cloud computing massive infrastructure, which is required to respond quickly and effectively to users requests. Transferring big data volume among the aforementioned parties requires a high bandwidth connection, which consumes larger amounts of energy than just processing and storing big data on cloud data centres, and hence producing high carbon dioxide emissions. This power consumption is highly significant when transferring big data into a data centre located relatively far from the users geographical location. Thus, it became high-necessity to locate the lowest energy consumption route between the user and the designated data centre, while making sure the users requirements, e.g. response time, are met. The main contribution of this paper is GreeDi, a network-based routing algorithm to find the most energy efficient path to the cloud data centre for processing and storing big data. The algorithm is, first, formalised by the situation calculus. The linear, goal and dynamic programming approaches used to model the algorithm. The algorithm is then evaluated against the baseline shortest path algorithm with minimum number of nodes traversed, using a real Italian ISP physical network topology
- …