785 research outputs found
First-class patterns
Pure pattern calculus supports pattern-matching functions in which patterns are first-class citizens that can be passed as parameters, evaluated and returned as results. This new expressive power supports two new forms of polymorphism. Path polymorphism allows recursive functions to traverse arbitrary data structures. Pattern polymorphism allows patterns to be treated as parameters which may be collected from various sources or generated from training data. A general framework for pattern calculi is developed. It supports a proof of confluence that is parameterised by the nature of the matching algorithm, suitable for the pure pattern calculus and all other known pattern calculi. © 2009 Copyright Cambridge University Press
Design and Control of Motion Compensation Cardiac Catheters
Robotic cardiac catheters have the potential to revolutionize heart surgery by extending minimally invasive techniques to complex surgical repairs inside the heart. However, catheter technologies are currently unable to track fast tissue motion, which is required to perform delicate procedures inside a beating heart. This paper proposes an actuated catheter tool that compensated for the motion of heart structures like the mitral valve apparatus by servoing a catheter guidewire inside a flexible sheath. We examine design and operation parameters that affect performance and establish that friction and backlash limit the tracking performance of the catheter system. Based on the results of these experiments and a model of the backlash behavior, we propose and implement compensation methods to improve trajectory tracking performance. The catheter system is evaluated with 3D ultrasound guidance in simulate in vivo conditions. the results demonstrate that with mechanical and control system design improvements, a robotic catheter system can accurately track the fast motion of the human mitral valve.Engineering and Applied Science
Ultrasound Servoing of Catheters for Beating Heart Valve Repair
Robotic cardiac catheters have the potential to revolutionize heart surgery by extending minimally invasive techniques to complex surgical repairs inside the heart. However, catheter technologies are currently unable to track fast tissue motion, which is required to perform delicate procedures inside a beating heart. This paper presents an actuated catheter tool that compensates for the motion of heart structures like the mitral valve apparatus by servoing a catheter guidewire inside a flexible sheath. We examine design and operation parameters and establish that friction and backlash limit the tracking performance of the catheter system. Based on the results of these experiments, we implement compensation methods to improve trajectory tracking. The catheter system is then integrated with an ultrasound-based visual servoing system to enable fast tissue tracking. In vivo tests show RMS tracking errors of 0.77 mm for following the porcine mitral valve annulus trajectory. The results demonstrate that an ultrasound-guided robotic catheter system can accurately track the fast motion of the mitral valve.Engineering and Applied Science
Recommended from our members
3D Ultrasound-Guided Motion Compensation System for Beating Heart Mitral Valve Repair
Beating heart intracardiac procedures promise significant benefits for patients, however, the fast motion of the heart poses serious challenges to surgeons. We present a new 3D ultrasound-guided motion (3DUS) compensation system that synchronizes instrument motion with the heart. The system utilizes the fact that the motion of some intracardiac structures, including the mitral valve annulus, is largely constrained to translation along one axis. This allows the development of a real-time 3DUS tissue tracker which we integrate with a 1 degree-of-freedom actuated surgical instrument, real-time 3DUS instrument tracker, and predictive filter to devise a system with synchronization accuracy of 1.8 mm RMSE. User studies involving the deployment of surgical anchors in a simulated mitral annuloplasty procedure demonstrate that the system increases success rates by over 100%. Furthermore, it enables more careful anchor deployment by reducing forces to the tissue by 50% while allowing instruments to remain in contact with the tissue for longer periods.Engineering and Applied Science
Recommended from our members
High-resolution Xist binding maps reveal 2-step spreading during X-inactivation
The Xist long noncoding RNA (lncRNA) is essential for X-chromosome inactivation (XCI), the process by which mammals compensate for unequal numbers of sex chromosomes1-3. During XCI, Xist coats the future inactive X (Xi)4 and recruits Polycomb Repressive Complex 2 (PRC2) to the X-inactivation center (Xic)5. How Xist spreads silencing on a 150 Mb scale is unclear. Here we generate high-resolution maps of Xist binding on the X chromosome across a developmental time course using CHART-seq. In female cells undergoing XCI de novo, Xist follows a two-step mechanism, initially targeting gene-rich islands before spreading to intervening gene-poor domains. Xist is depleted from genes that escape XCI but may concentrate near escapee boundaries. Xist binding is linearly proportional to PRC2 density and H3 lysine 27 trimethylation (H3K27me3), suggesting co-migration of Xist and PRC2. Interestingly, when the Xi is acutely stripped off Xist in post-XCI cells, Xist recovers quickly within both gene-rich and -poor domains on a time-scale of hours instead of days, suggesting a previously primed Xi chromatin state. We conclude that Xist spreading takes distinct stage-specific forms: During initial establishment, Xist follows a two-step mechanism, but during maintenance, Xist spreads rapidly to both gene-rich and -poor regions
Determinants of impact : towards a better understanding of encounters with the arts
The article argues that current methods for assessing the impact of the arts are largely based on a fragmented and incomplete understanding of the cognitive, psychological and socio-cultural dynamics that govern the aesthetic experience. It postulates that a better grasp of the interaction between the individual and the work of art is the necessary foundation for a genuine understanding of how the arts can affect people. Through a critique of philosophical and empirical attempts to capture the main features of the aesthetic encounter, the article draws attention to the gaps in our current understanding of the responses to art. It proposes a classification and exploration of the factors—social, cultural and psychological—that contribute to shaping the aesthetic experience, thus determining the possibility of impact. The ‘determinants of impact’ identified are distinguished into three groups: those that are inherent to the individual who interacts with the artwork; those that are inherent to the artwork; and ‘environmental factors’, which are extrinsic to both the individual and the artwork. The article concludes that any meaningful attempt to assess the impact of the arts would need to take these ‘determinants of impact’ into account, in order to capture the multidimensional and subjective nature of the aesthetic experience
- …
