39 research outputs found

    Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid

    Get PDF
    Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate

    Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011

    Get PDF
    Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.status: publishe

    Impact of the lipopolysaccharide chemotype of salmonella enterica serovar typhimurium on virulence in gnotobiotic piglets

    No full text
    Salmonella Typhimurium is an enteric pathogen that causes acute and chronic infections in humans and animals. One-week-old germ-free piglets were orally colonized/infected with the Salmonella Typhimurium LT2 strain or its isogenic rough ΔrfaL, ΔrfaG or ΔrfaC mutants with exactly defined lipopolysaccharide (LPS) defects. After 24 h, the piglets were euthanized and the colonization of the small intestine, translocations into the mesenteric lymph nodes, liver, spleen, lungs, and bacteremia, along with changes in the ileum histology, and transcription levels of the tight junction proteins claudin-1, claudin-2, and occludin were all assessed. Additionally, transcription levels of IL-8, TNF-α, and IL-10 in the terminal ileum, and their local and systemic protein levels were evaluated. Wild-type Salmonella Typhimurium showed the highest translocation, histopathological changes, upregulation of claudins and downregulation of occludin, transcription of the cytokines, intestinal IL-8 and TNF-α levels, and systemic TNF-α and IL-10 levels. Depending on the extent of the incompleteness of the LPS, the levels of the respective elements decreased, or no changes were observed at all in the piglets colonized/infected with Δrfa mutants. Intestinal IL-10 and systemic IL-8 levels were not detected in any piglet groups. This study provided foundational data on the gnotobiotic piglet response to colonization/infection with the exactly defined rough Salmonella Typhimurium LT2 isogenic mutants

    High resolution parallel sequencing reveals multi-strain Campylobacter in broiler chicken flocks testing ‘negative’ by conventional culture methods: implications for control of Campylobacter infection

    No full text
    Contaminated chicken meat is a major source of human Campylobacteriosis and rates of infection remain high, despite efforts to limit the colonisation of broiler (meat) chicken flocks on farms. Using conventional testing methods of culture or qPCR, Campylobacter is typically detected amongst broiler flocks from 3 weeks of age, leading to the assumption that infection is introduced horizontally into chicken rearing houses at this time. In this study, we use parallel sequencing of a fragment of the Campylobacter outer membrane protein, encoded by the porA gene, to test for presence of Campylobacter DNA amongst fresh faecal samples collected from broiler flocks aged 23-28 days. Campylobacter DNA was detected in all of the 290 samples tested using the porA target, and in 48% of samples using 16S bacterial profiling, irrespective of whether or not Campylobacter could be detected using conventional qPCR thresholds. A single porAf2 variant was predominant amongst flocks that would be determined to be Campylobacter ‘positive’ by conventional means, but a diverse pattern was seen amongst flocks that were Campylobacter ‘negative’. The ability to routinely detect low levels of Campylobacter amongst broiler flocks at a much earlier age than would conventionally be identified requires a re-examination of how and when biosecurity measures are best applied for live birds. In addition, it may be useful to investigate why single Campylobacter variants proliferate in some broiler flocks and not others

    Development of small bisquaternary cholinesterase inhibitors as drugs for pre-treatment of nerve agent poisonings

    No full text
    Kamil Kuca,1,2 Jana Zdarova Karasova,2,3 Ondrej Soukup,2 Jiri Kassa,3 Eva Novotna,2 Vendula Sepsova,2,3 Anna Horova,2 Jaroslav Pejchal,3 Martina Hrabinova,2,3 Eva Vodakova,2 Daniel Jun,2,3 Eugenie Nepovimova,1,2 Martin Valis,4 Kamil Musilek1,2 1Department of Chemistry, Faculty of Science, University of Hradec Kralove, 2Biomedical Research Center, University Hospital Hradec Kralove, 3Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 4Department of Neurology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic Background: Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods: The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results: The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion: The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. Keywords: AChE inhibitors, prophylaxis, pre-treatment, nerve agents, toxicity, soma
    corecore