554 research outputs found

    All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures

    Full text link
    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene-BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon-phonon-polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons, and even more surprisingly, between hybrid graphene plasmons, and between hybrid phonon polaritons. Graphene-BN heterostructures thus provide a versatile platform for the design of nano-metasurfaces and nano-imaging elements.Comment: 16 pages; 3 figure

    Quantum \v{C}erenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum

    Get PDF
    We show that the well-known \v{C}erenkov Effect contains new phenomena arising from the quantum nature of charged particles. The \v{C}erenkov transition amplitudes allow coupling between the charged particle and the emitted photon through their orbital angular momentum (OAM) and spin, by scattering into preferred angles and polarizations. Importantly, the spectral response reveals a discontinuity immediately below a frequency cutoff that can occur in the optical region. Specifically, with proper shaping of electron beams (ebeams), we predict that the traditional \v{C}erenkov radiation angle splits into two distinctive cones of photonic shockwaves. One of the shockwaves can move along a backward cone, otherwise considered impossible for \v{C}erenkov radiation in ordinary matter. Our findings are observable for ebeams with realistic parameters, offering new applications including novel quantum optics sources, and open a new realm for \v{C}erenkov detectors involving the spin and orbital angular momentum of charged particles.Comment: 27 pages, 3 figure

    From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields

    Get PDF
    Light-electron interaction in empty space is the seminal ingredient for free-electron lasers and also for controlling electron beams to dynamically investigate materials and molecules. Pushing the coherent control of free electrons by light to unexplored timescales, below the attosecond, would enable unprecedented applications in light-assisted electron quantum circuits and diagnostics at extremely small timescales, such as those governing intramolecular electronic motion and nuclear phenomena. We experimentally demonstrate attosecond coherent manipulation of the electron wave function in a transmission electron microscope, and show that it can be pushed down to the zeptosecond regime with existing technology. We make a relativistic pulsed electron beam interact in free space with an appropriately synthesized semi-infinite light field generated by two femtosecond laser pulses reflected at the surface of a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting coherent oscillations of the electron states in energymomentum space are mapped via momentum-resolved ultrafast electron energy-loss spectroscopy. The experimental results are in full agreement with our theoretical framework for light-electron interaction, which predicts access to the zeptosecond timescale by combining semi-infinite X-ray fields with free electrons.Comment: 22 pages, 6 figure

    Imaging of Iso-frequency Contours via Resonance-Enhanced Scattering in Near-Pristine Photonic Crystals

    Get PDF
    The iso-frequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. Here, we demonstrate a method to directly visualize the iso-frequency contours of high-quality photonic crystal slabs that shows quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals, or even quasi-crystals. We also present an analytical model of the scattering process, which explains the observation of iso-frequency contours in our technique. Furthermore, the iso-frequency contours provide information about the characteristics of the disorder and therefore serve as a feedback tool to improve fabrication processes.Comment: 8 pages, 5 figure

    Laser-Induced Linear Electron Acceleration in Free Space

    Full text link
    Linear acceleration in free space is a topic that has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that such an ability is very doubtful. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility in a computational experiment. The formalism includes exact treatment of Maxwell's equations, exact relativistic treatment of the interaction among the multiple individual particles, and exact treatment of the interaction at near and far field. Several surprising results emerged. For example, we find that 30 keV electrons (2.5% energy spread) can be accelerated to 7.7 MeV (2.5% spread) and to 205 MeV (0.25% spread) using 25 mJ and 2.5 J lasers respectively. These findings should hopefully guide and help develop compact, high-quality, ultra-relativistic electron sources, avoiding conventional limits imposed by material breakdown or structural constraints.Comment: Supplementary Information starts on pg 1

    Controlling Cherenkov angles with resonance transition radiation

    Full text link
    Cherenkov radiation provides a valuable way to identify high energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on material's permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring Imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi GeV range, and thus are often limited to large gas chambers. It would be extremely important albeit challenging to lift this fundamental limit and control Cherenkov angles as preferred. Here we propose a new mechanism that uses constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the severe material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising option suited for identification of particles at high energy with enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary information with 18 pages and 5 figures, appended at the end of the file with the manuscript. Source files in Word format converted to PDF. Submitted to Nature Physic
    corecore