14,108 research outputs found
Influence of Cooper pairing on the inelastic processes in a gas of Fermi atoms
Correlation properties in ultracold Fermi gas with negative scattering length
and its impact on the three-body recombination is analyzed. We find that Cooper
pairing enhances the recombination rate in contrast to the decrease of this
rate accompanying Bose-Einstein condensation in a Bose gas. This trend is
characteristic for all interval of temperatures T<Tc
Probing New Physics From CP Violation in Radiative B Decays
When new CP-violating interactions are dominated by flavor changing neutral
particle exchanges, that may occur in many extensions of the standard model. We
examine a type 3 two Higgs doublet model and find that direct CP asymmetries
can be as large as about 25% . Time-dependent and time-integrated
mixing-induced CP asymmetries up to 85 and 40 %, respectively, are possible
without conflict with other constraints. It mainly requirs an enhanced
chromo-magnetic dipole decay to be close to the present experimental
bound.Comment: 7 pages, latex, no figure
BCS - BEC crossover and quantum hydrodynamics in p-wave superfluids with a symmetry of the A1 - phase
We solve the Leggett equations for the BCS - BEC crossover in the three
dimension resonance p-wave superfluid with the symmetry of the A1 - phase. We
calculate the sound velocity, the normal density, and the specific heat for the
BCS-domain (\mu > 0), BEC-domain (\mu < 0), and close to important point \mu =
0 in 100% polarized case. We find the indications of quantum phase - transition
close to the point \mu(T = 0) = 0. Deep in the BCS and BEC-domains the
crossover ideas of Leggett and Nozieres, Schmitt-Rink work pretty well. We
discuss the spectrum of orbital waves, the paradox of intrinsic angular
momentum and complicated problem of chiral anomaly in the BCS A1 - phase at T =
0. We present two different approaches to a chiral anomaly: one based on
supersymmetric hydrodynamics, another one on the formal analogy with the Dirac
equation in quantum electrodynamics. We evaluate the damping of nodal fermions
due to different decay processes in superclean case at T = 0 and find that we
are in a ballistic regime \omega\tau >> 1. We propose to use aerogel or
nonmagnetic impurities to reach hydrodynamic regime \omega\tau<< 1 at T = 0. We
discuss the concept of the spectral flow and exact cancellations between
time-derivatives of anomalous and quasiparticle currents in the equation for
the total linear momentum conservation. We propose to derive and solve the
kinetic equation for the nodal quasiparticles both in the hydrodynamic and in
the ballistic regimes to demonstrate this cancellation explicitly. We briefly
discuss the role of the other residual interactions different from damping and
invite experimentalists to measure the spectrum and damping of orbital waves in
A-phase of 3He at low temperatures.Comment: 14 pages, 10 figure
Intercluster Correlation in Seismicity
Mega et al.(cond-mat/0212529) proposed to use the ``diffusion entropy'' (DE)
method to demonstrate that the distribution of time intervals between a large
earthquake (the mainshock of a given seismic sequence) and the next one does
not obey Poisson statistics. We have performed synthetic tests which show that
the DE is unable to detect correlations between clusters, thus negating the
claimed possibility of detecting an intercluster correlation. We also show that
the LR model, proposed by Mega et al. to reproduce inter-cluster correlation,
is insufficient to account for the correlation observed in the data.Comment: Comment on Mega et al., Phys. Rev. Lett. 90. 188501 (2003)
(cond-mat/0212529
Saccades and drifts differentially modulate neuronal activity in V1: Effects of retinal image motion, position, and extraretinal influences
In natural vision, continuously changing input is generated by fast saccadic eye movements and slow drifts. We analyzed effects of fixational saccades, voluntary saccades, and drifts on the activity of macaque V1 neurons. Effects of fixational saccades and small voluntary saccades were equivalent. In the presence of a near-optimal stimulus, separate populations of neurons fired transient bursts after saccades, sustained discharges during drifts, or both. Strength, time course, and selectivity of activation by fast and slow eye movements were strongly correlated with responses to flashed or to externally moved stimuli. These neuronal properties support complementary functions for post-saccadic bursts and drift responses. Local post-saccadic bursts signal rapid motion or abrupt change of potentially salient stimuli within the receptive field; widespread synchronized bursts signal occurrence of a saccade. Sustained firing during drifts conveys more specific information about location and contrast of small spatial features that contribute to perception of fine detail. In addition to stimulus-driven responses, biphasic extraretinal modulation accompanying saccades was identified in one third of the cells. Brief perisaccadic suppression was followed by stronger and longer-lasting enhancement that could bias perception in favor of saccade targets. These diverse patterns of neuronal activation underlie the dynamic encoding of our visual world
Phase separation in systems with charge ordering
A simple model of charge ordering is considered. It is shown explicitly that
at any deviation from half-filling () the system is unstable with
respect to phase separation into charge ordered regions with and
metallic regions with smaller electron or hole density. Possible structure of
this phase-separated state (metallic droplets in a charge-ordered matrix)is
discussed. The model is extended to account for the strong Hund-rule onsite
coupling and the weaker intersite antiferromagnetic exchange. An analysis of
this extended model allows us to determine the magnetic structure of the
phase-separated state and to reveal the characteristic features of manganites
and other substances with charge ordering.Comment: 9 pages, revte
Finite temperature correlations and density profiles of an inhomogeneous interacting 1D Bose gas
We calculate the density profiles and density correlation functions of the
one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature
solutions for the uniform case, and applying a local density approximation. The
results are valid for a trapping potential which is slowly varying relative to
a correlation length. They allow a direct experimental test of the transition
from the weak coupling Gross-Pitaevskii regime to the strong coupling,
'fermionic' Tonks-Girardeau regime. We also calculate the average two-particle
correlation which characterizes the bulk properties of the sample, and find
that it can be well approximated by the value of the local pair correlation in
the trap center.Comment: Final published version; updated references; 19 pages, 12 figure
Double-exchange model: phase separation versus canted spins
We study the competition between different possible ground states of the
double-exchange model with strong ferromagnetic exchange interaction between
itinerant electrons and local spins. Both for classical and quantum treatment
of the local spins the homogeneous canted state is shown to be unstable against
a phase separation. The conditions for the phase separation into the mixture of
the antiferromagnetic and ferromagnetic/canted states are given. We also
discuss another possible realization of the phase-separated state:
ferromagnetic polarons embedded into an antiferromagnetic surrounding. The
general picture of a percolated state, which emerges from these considerations,
is discussed and compared with results of recent experiments on doped
manganaties.Comment: 10 pages, revtex, modified text and 2 new figure
- …
