367 research outputs found
Does relative deprivation induce migration?: evidence from Sub-Saharan Africa
This analysis revisits the decades-old relative deprivation theory of migration. In contrast to the traditional view that migration is driven by absolute income maximization, we test whether relative deprivation induces migration in the context of sub-Saharan Africa. Taking advantage of the internationally comparable longitudinal data from integrated household and agriculture surveys from Tanzania, Ethiopia, Malawi, Nigeria, and Uganda, we use panel fixed effects to estimate the effects of relative deprivation on migration decisions. Using per capita consumption expenditure and multidimensional wealth index as well-being measures, we find that a household’s migration decision is based not only on its absolute well-being level but also on the relative position of the household in the well-being distribution of the community in which it resides. We also discover that the effect of relative deprivation on migration is amplified in rural, agricultural, and male-headed households. Results are robust to alternative specifications including the use of Hausman Taylor Instrumental Variable (HTIV) estimator and pooled data across the five countries. Results confirm that the “migration-relative deprivation” relationship also holds in the context of sub-Saharan Africa. We argue that policies designed to check rural–urban migration through rural transformation and poverty reduction programs should use caution because such programs can increase economic inequality, which further increases migration flow
Recommended from our members
Biomass Fuel Use and Cardiac Function in Nepali Women.
BackgroundExposure to household air pollution (HAP) from cooking with biomass fuel affects billions of people. We hypothesized that HAP from woodsmoke, compared to other household fuels, was associated with adverse cardiovascular outcomes, of which there have been few studies.MethodsA cross-sectional study was completed in 299 females aged 40-70 years in Kaski District, Nepal, during 2017-18. All participants underwent a standard 12-lead ECG, ankle and brachial systolic blood pressure measurement, and 2D color and Doppler echocardiography. Current stove type was confirmed by inspection. Blood pressure, height, and weight were measured using a standardized protocol. Hypertension was defined as ≥140/90 mmHg or prior diagnosis. Hemoglobin A1c (HbA1c) was obtained, with diabetes mellitus defined as a prior diagnosis or HbA1C ≥ 6.5%. We used adjusted linear and logistic multivariable regressions to examine the relationship of stove type with cardiac structure and function.ResultsThe majority of women primarily used liquified petroleum gas (LPG) stoves (65%), while 12% used biogas, and 23% used wood-burning cook-stoves. Prevalence of major cardiovascular risk factors was 35% with hypertension, 19% with diabetes mellitus, and 15% current smokers. After adjustment, compared to LPG, wood stove use was associated with increased indexed left atrial volume (β = 3.15, 95% CI 1.22 to 5.09) and increased indexed left ventricular end diastolic volume (β = 7.97, 95% CI 3.11 to 12.83). There was no association between stove type and systemic hypertension, left ventricular mass, systolic dysfunction, diastolic dysfunction, pulmonary hypertension, abnormal ankle-brachial index, or clinically significant ECG abnormalities.ConclusionBiomass fuel use was associated with increased indexed left atrial volume and increased indexed left ventricular diastolic volume in Nepali women, suggesting subclinical adverse cardiac remodeling from HAP in this cross-sectional study. We did not find evidence of an association with hypertension or typical cardiac sequelae of hypertension. Future studies to confirm these results are needed
Trait‐mediated indirect interactions: Moose browsing increases sawfly fecundity through plant‐induced responses
1. Induced responses in plants, initiated by herbivory, create potential for trait‐mediated indirect interactions among herbivores. Responses to an initial herbivore may change a number of plant traits that subsequently alter ecological processes with additional herbivores. Although common, indirect interactions between taxonomically distant herbivores, such as mammals and insects, are less studied than between taxonomically related species (i.e., insect–insect). In terms of mammal– insect interactions, effects on insect numbers (e.g., density) are relatively well studied, whereas effects on performance (e.g., fecundity) are rarely explored. Moreover, few studies have explored mammal–insect interactions on coniferous plants. 2. The aim of this study was to investigate the effect of mammalian induced responses on insect performance. We specifically investigated the effect of moose (Alces alces) browsing on Scots pine (Pinus sylvestris) and subsequent effects on sawfly (Neodiprion sertifer) performance. 3. Sawfly larvae were reared on browsed, clipped, and unbrowsed control pine trees in a controlled field experiment. Afterward, cocoon weight was measured. Needle C:N ratio and di‐terpene content were measured in response to browsing. 4. Sawfly performance was enhanced on trees browsed by moose. Cocoon weight (proxy for fecundity) was 9 and 13% higher on browsed and clipped trees compared to unbrowsed trees. Cocoon weight was weakly related to needle C:N ratio, and browsed trees had lower a C:N ratio compared to unbrowsed trees. Needle di‐terpene content, known to affect sawfly performance, was neither affected by the browsing treatments nor did it correlate with sawfly weight. 5. We conclude that mammalian herbivory can affect insect herbivore performance, with potential consequences for ecological communities and with particular importance for insect population dynamics. The measured plant variables could not fully explain the effect on sawfly performance providing a starting point for the consideration of additional plant responses induced by mammalian browsing affecting insect performance
The K2-HERMES Survey: Age and Metallicity of the Thick Disc
Asteroseismology is a promising tool to study Galactic structure and
evolution because it can probe the ages of stars. Earlier attempts comparing
seismic data from the {\it Kepler} satellite with predictions from Galaxy
models found that the models predicted more low-mass stars compared to the
observed distribution of masses. It was unclear if the mismatch was due to
inaccuracies in the Galactic models, or the unknown aspects of the selection
function of the stars. Using new data from the K2 mission, which has a
well-defined selection function, we find that an old metal-poor thick disc, as
used in previous Galactic models, is incompatible with the asteroseismic
information. We show that spectroscopic measurements of [Fe/H] and
[/Fe] elemental abundances from the GALAH survey indicate a mean
metallicity of for the thick disc. Here is the
effective solar-scaled metallicity, which is a function of [Fe/H] and
[/Fe]. With the revised disc metallicities, for the first time, the
theoretically predicted distribution of seismic masses show excellent agreement
with the observed distribution of masses. This provides an indirect
verification of the asteroseismic mass scaling relation is good to within five
percent. Using an importance-sampling framework that takes the selection
function into account, we fit a population synthesis model of the Galaxy to the
observed seismic and spectroscopic data. Assuming the asteroseismic scaling
relations are correct, we estimate the mean age of the thick disc to be about
10 Gyr, in agreement with the traditional idea of an old -enhanced
thick disc.Comment: 21 pages, submitted to MNRA
Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi
Abstract Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a “pretreatment” used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability
Commercial thinning and nitrogen fertilization increases merchantability in 68-year-old lodgepole pine: 20-year results
A commercial thinning and fertilization experiment using 2x6 factorial design was initiated in a 68-year-old lodgepole pine stand in Alberta. Commercial thinning to remove 50% basal area from below was combined with nitrogen fertilization at five levels (No fertilizer, 200 kg/ha N Urea +boron, 200 kg/ha N+blend, 400 kg/ha N+boron, 400 kg/ha N+blend and 400 kg/ha N ammonium nitrate+boron). This study reports results from re-measurement 20 years later. At the stand level, commercial thinning had no impact on the final stand volume but did increase the cumulative merchantable volume (volume removed at time of thinning + final standing volume). Individual DBH growth was increased by thinning and fertilization treatments individually and additively meaning that individual tree growth was greatest for trees that were both thinned and had high fertilization (400 levels). Individual tree diameter at thinning was the best single predictor of 20-year growth response with medium-sized trees responding to thinning alone and thinning and 400-level fertilization. Mortality was increased by fertilization on unthinned plots while thinning increased the proportion of large sawlogs (>20 cm DBH) by 20%. Overall, commercial thinning and fertilization can be used to increase merchantability in natural lodgepole pine stands, even during later rotation.The presentation of the authors' names and (or) special characters in the title of the pdf file of the accepted manuscript may differ slightly from what is displayed on the item page. The information in the pdf file of the accepted manuscript reflects the original submission by the author
Beta Dips in the Gaia Era: Simulation Predictions of the Galactic Velocity Anisotropy Parameter (β) for Stellar Halos
The velocity anisotropy parameter, β, is a measure of the kinematic state of orbits in the stellar halo, which holds promise for constraining the merger history of the Milky Way (MW). We determine global trends for β as a function of radius from three suites of simulations, including accretion-only and cosmological hydrodynamic simulations. We find that the two types of simulations are consistent and predict strong radial anisotropy () for Galactocentric radii greater than 10 kpc. Previous observations of β for the MW's stellar halo claim a detection of an isotropic or tangential "dip" at r ~ 20 kpc. Using the N-body+SPH simulations, we investigate the temporal persistence, population origin, and severity of "dips" in β. We find that dips in the in situ stellar halo are long-lived, while dips in the accreted stellar halo are short-lived and tied to the recent accretion of satellite material. We also find that a major merger as early as z ~ 1 can result in a present-day low (isotropic to tangential) value of β over a broad range of radii and angles. While all of these mechanisms are plausible drivers for the β dip observed in the MW, each mechanism in the simulations has a unique metallicity signature associated with it, implying that future spectroscopic surveys could distinguish between them. Since an accurate knowledge of β(r) is required for measuring the mass of the MW halo, we note that significant transient dips in β could cause an overestimate of the halo's mass when using spherical Jeans equation modeling
Galaxy And Mass Assembly (GAMA): end of survey report and data release 2
The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low-redshift galaxies. Covering an area of ~286 deg^2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238,000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm - 1 m. Here we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component S\'ersic fits, stellar masses, H-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72,225 objects in total). The database serving these data is available at http://www.gama-survey.org/
- …
