3,736 research outputs found

    The Irreducible String and an Infinity of Additional Constants of Motion in a Deposition-Evaporation Model on a Line

    Get PDF
    We study a model of stochastic deposition-evaporation with recombination, of three species of dimers on a line. This model is a generalization of the model recently introduced by Barma {\it et. al.} (1993 {\it Phys. Rev. Lett.} {\bf 70} 1033) to q3q\ge 3 states per site. It has an infinite number of constants of motion, in addition to the infinity of conservation laws of the original model which are encoded as the conservation of the irreducible string. We determine the number of dynamically disconnected sectors and their sizes in this model exactly. Using the additional symmetry we construct a class of exact eigenvectors of the stochastic matrix. The autocorrelation function decays with different powers of tt in different sectors. We find that the spatial correlation function has an algebraic decay with exponent 3/2, in the sector corresponding to the initial state in which all sites are in the same state. The dynamical exponent is nontrivial in this sector, and we estimate it numerically by exact diagonalization of the stochastic matrix for small sizes. We find that in this case z=2.39±0.05z=2.39\pm0.05.Comment: Some minor errors in the first version has been correcte

    Numerical Diagonalisation Study of the Trimer Deposition-Evaporation Model in One Dimension

    Get PDF
    We study the model of deposition-evaporation of trimers on a line recently introduced by Barma, Grynberg and Stinchcombe. The stochastic matrix of the model can be written in the form of the Hamiltonian of a quantum spin-1/2 chain with three-spin couplings given by H= \sum\displaylimits_i [(1 - \sigma_i^-\sigma_{i+1}^-\sigma_{i+2}^-) \sigma_i^+\sigma_{i+1}^+\sigma_{i+2}^+ + h.c]. We study by exact numerical diagonalization of HH the variation of the gap in the eigenvalue spectrum with the system size for rings of size up to 30. For the sector corresponding to the initial condition in which all sites are empty, we find that the gap vanishes as LzL^{-z} where the gap exponent zz is approximately 2.55±0.152.55\pm 0.15. This model is equivalent to an interfacial roughening model where the dynamical variables at each site are matrices. From our estimate for the gap exponent we conclude that the model belongs to a new universality class, distinct from that studied by Kardar, Parisi and Zhang.Comment: 11 pages, 2 figures (included

    Heat conduction in disordered harmonic lattices with energy conserving noise

    Full text link
    We study heat conduction in a harmonic crystal whose bulk dynamics is supplemented by random reversals (flips) of the velocity of each particle at a rate λ\lambda. The system is maintained in a nonequilibrium stationary state(NESS) by contacts with Langevin reservoirs at different temperatures. We show that the one-body and pair correlations in this system are the same (after an appropriate mapping of parameters) as those obtained for a model with self-consistent reservoirs. This is true both for the case of equal and random(quenched) masses. While the heat conductivity in the NESS of the ordered system is known explicitly, much less is known about the random mass case. Here we investigate the random system, with velocity flips. We improve the bounds on the Green-Kubo conductivity obtained by C.Bernardin. The conductivity of the 1D system is then studied both numerically and analytically. This sheds some light on the effect of noise on the transport properties of systems with localized states caused by quenched disorder.Comment: 19 pages, 8 figure

    Inverse Avalanches On Abelian Sandpiles

    Full text link
    A simple and computationally efficient way of finding inverse avalanches for Abelian sandpiles, called the inverse particle addition operator, is presented. In addition, the method is shown to be optimal in the sense that it requires the minimum amount of computation among methods of the same kind. The method is also conceptually nice because avalanche and inverse avalanche are placed in the same footing.Comment: 5 pages with no figure IASSNS-HEP-94/7

    Eulerian Walkers as a model of Self-Organised Criticality

    Get PDF
    We propose a new model of self-organized criticality. A particle is dropped at random on a lattice and moves along directions specified by arrows at each site. As it moves, it changes the direction of the arrows according to fixed rules. On closed graphs these walks generate Euler circuits. On open graphs, the particle eventually leaves the system, and a new particle is then added. The operators corresponding to particle addition generate an abelian group, same as the group for the Abelian Sandpile model on the graph. We determine the critical steady state and some critical exponents exactly, using this equivalence.Comment: 4 pages, RevTex, 4 figure

    Sampling rare fluctuations of height in the Oslo ricepile model

    Full text link
    We have studied large deviations of the height of the pile from its mean value in the Oslo ricepile model. We sampled these very rare events with probabilities of order 1010010^{-100} by Monte Carlo simulations using importance sampling. These simulations check our qualitative arguement [Phys. Rev. E, {\bf 73}, 021303, 2006] that in steady state of the Oslo ricepile model, the probability of large negative height fluctuations Δh=αL\Delta h=-\alpha L about the mean varies as exp(κα4L3)\exp(-\kappa {\alpha}^4 L^3) as LL \to \infty with α\alpha held fixed, and κ>0\kappa > 0.Comment: 7 pages, 8 figure
    corecore