2,791 research outputs found
A method motion simulator design based on modeling characteristics of the human operator
A design criteria is obtained to compare two simulators and evaluate their equivalence or credibility. In the subsequent analysis the comparison of two simulators can be considered as the same problem as the comparison of a real world situation and a simulation's representation of this real world situation. The design criteria developed involves modeling of the human operator and defining simple parameters to describe his behavior in the simulator and in the real world situation. In the process of obtaining human operator parameters to define characteristics to evaluate simulators, measures are also obtained on these human operator characteristics which can be used to describe the human as an information processor and controller. First, a study is conducted on the simulator design problem in such a manner that this modeling approach can be used to develop a criteria for the comparison of two simulators
Using model order tests to determine sensory inputs in a motion study
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs
Coherent states for polynomial su(1,1) algebra and a conditionally solvable system
In a previous paper [{\it J. Phys. A: Math. Theor.} {\bf 40} (2007) 11105],
we constructed a class of coherent states for a polynomially deformed
algebra. In this paper, we first prepare the discrete representations of the
nonlinearly deformed algebra. Then we extend the previous procedure
to construct a discrete class of coherent states for a polynomial su(1,1)
algebra which contains the Barut-Girardello set and the Perelomov set of the
SU(1,1) coherent states as special cases. We also construct coherent states for
the cubic algebra related to the conditionally solvable radial oscillator
problem.Comment: 2 figure
Binary Black Hole Coalescence in Semi-Analytic Puncture Evolution
Binary black-hole coalescence is treated semi-analytically by a novel
approach. Our prescription employs the conservative Skeleton Hamiltonian that
describes orbiting Brill-Lindquist wormholes (termed punctures in Numerical
Relativity) within a waveless truncation to the Einstein field equations [G.
Faye, P. Jaranowski and G. Sch\"afer, Phys. Rev. D {\bf 69}, 124029 (2004)]. We
incorporate, in a transparent Hamiltonian way and in Burke-Thorne gauge
structure, the effects of gravitational radiation reaction into the above
Skeleton dynamics with the help of 3.5PN accurate angular momentum flux for
compact binaries in quasi-circular orbits to obtain a Semi-Analytic Puncture
Evolution to model merging black-hole binaries. With the help of the TaylorT4
approximant at 3.5PN order, we perform a {\it first-order} comparison between
gravitational wave phase evolutions in Numerical Relativity and our approach
for equal-mass binary black holes. This comparison reveals that a modified
Skeletonian reactive dynamics that employs flexible parameters will be required
to prevent the dephasing between our scheme and Numerical Relativity, similar
to what is pursued in the Effective One Body approach. A rough estimate for the
gravitational waveform associated with the binary black-hole coalescence in our
approach is also provided.Comment: 16 pages, 5 figure
Reconstructing Gaussian bipartite states with a single polarization-sensitive homodyne detector
We present a novel method to fully estimate Gaussian bipartite polarization states using only a single homodyne detector. Our approach is based on [Phys. Rev. Lett. 102, 020502 (2009)], but circumvents additional optics, and thereby losses, in the signal path. We provide an intuitive explanation of our scheme without needing to define auxiliary modes. With six independent measurements, we fully reconstruct the state’s covariance matrix. We validate our method by comparing it to a conventional dual-homodyne measurement scheme
Extreme tunability of interactions in a Li Bose-Einstein condensate
We use a Feshbach resonance to tune the scattering length a of a
Bose-Einstein condensate of 7Li in the |F = 1, m_F = 1> state. Using the
spatial extent of the trapped condensate we extract a over a range spanning 7
decades from small attractive interactions to extremely strong repulsive
interactions. The shallow zero-crossing in the wing of the Feshbach resonance
enables the determination of a as small as 0.01 Bohr radii. In this regime,
evidence of the weak anisotropic magnetic dipole interaction is obtained by
comparison with different trap geometries
Topological methods for searching barriers and reaction paths
We present a family of algorithms for the fast determination of reaction
paths and barriers in phase space and the computation of the corresponding
rates. The method requires the reaction times be large compared to the
microscopic time, irrespective of the origin - energetic, entropic, cooperative
- of the timescale separation. It lends itself to temperature cycling as in
simulated annealing and to activation-relaxation routines. The dynamics is
ultimately based on supersymmetry methods used years ago to derive Morse
theory. Thus, the formalism automatically incorporates all relevant topological
information.Comment: 4 pages, 4 figures, RevTex
- …