1,174 research outputs found
Numerical Investigation on Asymmetric Bilayer System at Integer Filling Factor
Deformation of the easy-axis ferromagnetic state in asymmetric bilayer
systems are investigated numerically. Using the exact diagonalization the
easy-axis to easy-plane ferromagnetic transition at total filling factor 3 or 4
is investigated. At still higher filling, novel stripe state in which stripes
are aligned in the vertical direction occurs. The Hartree-Fock energies of
relevant ordered states are calculated and compared.Comment: 4 pages, 6 figures, Proceedings of EP2DS-15, to appear in Physica
Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets
We explain the recent observation of resistance spikes and hysteretic
transport properties in Ising quantum Hall ferromagnets in terms of the unique
physics of their domain walls. Self-consistent RPA/Hartree-Fock theory is
applied to microscopically determine properties of the ground state and
domain-wall excitations. In these systems domain wall loops support
one-dimensional electron systems with an effective mass comparable to the bare
electron mass and may carry charge. Our theory is able to account
quantitatively for the experimental Ising critical temperature and to explain
characteristics of the resistive hysteresis loops.Comment: 4 pages, 3 figure
Self-Consistent Electron Subbands of Gaas/Algaas Heterostructure in Magnetic Fields Parallel to the Interface
The effect of strong magnetic fields parallel to GaAs/AlGaAs interface on the
subband structure of a 2D electron layer is ivestigated theoretically. The
system with two levels occupied in zero magnetic field is considered and the
magnetic field induced depletion of the second subband is studied. The
confining potential and the electron dispersion relations are calculated
self-consistently, the electron- electron interaction is taken into account in
the Hartree approximation.Comment: written in LaTeX, 8 pages, 4 figs. available on request from
[email protected]
Magnetoresistance and electronic structure of asymmetric GaAs/AlGaAs double quantum wells in the in-plane/tilted magnetic field
Bilayer two-dimensional electron systems formed by a thin barrier in the GaAs
buffer of a standard heterostructure were investigated by magnetotransport
measurements. In magnetic fields oriented parallel to the electron layers, the
magnetoresistance exhibits an oscillation associated with the depopulation of
the higher occupied subband and the field-induced transition into a decoupled
bilayer. Shubnikov-de Haas oscillations in slightly tilted magnetic fields
allow to reconstruct the evolution of the electron concentration in the
individual subbands as a function of the in-plane magnetic field. The
characteristics of the system derived experimentally are in quantitative
agreement with numerical self-consistent-field calculations of the electronic
structure.Comment: 6 pages, 5 figure
Optical conductivity of Mn doped GaAs
We study the optical conductivity in the III-V diluted magnetic semiconductor
GaMnAs and compare our calculations to available experimental data. Our model
study is able to reproduce both qualitatively and quantitatively the observed
measurements. We show that compensation (low carrier density) leads, in
agreement to the observed measurements to a red shift of the broad peak located
at approximately 200 meV for the optimally annealed sample. The non
perturbative treatment appears to be essential, otherwise a blueshift and an
incorrect amplitude would be obtained. By calculating the Drude weight (order
parameter) we establish the metal-insulator phase diagram. We indeed find that
Mn doped GaAs is close to the metal-insulator transition and that for 5 and
7 doped samples, 20 of the carriers only are delocalized. We have found
that the optical mass is approximately 2 m. We have also interesting
results for overdoped samples which could be experimentally realized by Zn
codoping.Comment: the manuscript has been extended, new figures are include
Non-Adiabatic Chemical Reaction Triggered by Electron Photodetachment: An ab initio Quantum Dynamical Study
Dynamics following electron photodetachment in a complex of a chloride anion with ammonia is explored by a combination of electronic structure and quantum dynamical methods. This system serves as a prototype for investigating a hithertho unexplored class of chemical reactions - non-adiabatic proton transfer triggered by a detachment of an electron. All the reactive and non-reactive channels of this process are characterized and the respective quantum yields are presented
- …