532 research outputs found
Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements
Measurements of mass-angle distributions (MADs) for Cr + W reactions,
providing a wide range in the neutron-to-proton ratio of the compound system,
(N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be
determined in a model-independent way. Previous experimental and theoretical
studies had produced conflicting conclusions. The experimental MADs reveal an
increase in contact time and mass evolution of the quasifission fragments with
increasing (N/Z)CN, which is indicative of an increase in the fusion
probability. The experimental results are in agreement with microscopic
time-dependent Hartree-Fock calculations of the quasifission process. The
experimental and theoretical results favor the use of the most neutron-rich
projectiles and targets for the production of heavy and superheavy nuclei.Comment: Accepted to PRC as a Rapid Communicatio
Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in Ni+Ni Reactions
Energy dissipative processes play a key role in how quantum many-body systems
dynamically evolve towards equilibrium. In closed quantum systems, such
processes are attributed to the transfer of energy from collective motion to
single-particle degrees of freedom; however, the quantum many-body dynamics of
this evolutionary process are poorly understood. To explore energy dissipative
phenomena and equilibration dynamics in one such system, an experimental
investigation of deep-inelastic and fusion-fission outcomes in the
Ni+Ni reaction has been carried out. Experimental outcomes have
been compared to theoretical predictions using Time Dependent Hartree Fock and
Time Dependent Random Phase Approximation approaches, which respectively
incorporate one-body energy dissipation and fluctuations. Excellent
quantitative agreement has been found between experiment and calculations,
indicating that microscopic models incorporating one-body dissipation and
fluctuations provide a potential tool for exploring dissipation in low-energy
heavy ion collisions.Comment: 11 pages, 9 figures, 1 table, including Supplemental Material -
Version accepted for publication in Physical Review Letter
Formation of ultracold RbCs molecules by photoassociation
The formation of ultracold metastable RbCs molecules is observed in a double
species magneto-optical trap through photoassociation below the
^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous
emission. The molecules are detected by resonance enhanced two-photon
ionization. Using accurate quantum chemistry calculations of the potential
energy curves and transition dipole moment, we interpret the observed
photoassociation process as occurring at short internuclear distance, in
contrast with most previous cold atom photoassociation studies. The vibrational
levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^-
electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation
limit. The computed vibrational distribution of the produced molecules shows
that they are stabilized in deeply bound vibrational states of the lowest
triplet state. We also predict that a noticeable fraction of molecules is
produced in the lowest level of the electronic ground state
Theoretical study of the absorption spectra of the sodium dimer
Absorption of radiation from the sodium dimer molecular states correlating to
Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum
transitions from the singlet X Sigma-g+ state to the first excited singlet A
Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the
first excited triplet b Sigma-g+ and triplet c Pi-g states are studied
quantum-mechanically. Theoretical and experimental data are used to
characterize the molecular properties taking advantage of knowledge recently
obtained from ab initio calculations, spectroscopy, and ultra-cold atom
collision studies. The quantum-mechanical calculations are carried out for
temperatures in the range from 500 to 3000 K and are compared with previous
calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps
Limit on suppression of ionization in metastable neon traps due to long-range anisotropy
This paper investigates the possibility of suppressing the ionization rate in
a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms.
Suppression of the ionization is critical for the possibility of reaching
Bose-Einstein condensation with such atoms. We estimate the relevant long-range
interactions for the system, consisting of electric quadrupole-quadrupole and
dipole-induced dipole terms, and develop short-range potentials based on the
Na_2 singlet and triplet potentials. The auto-ionization widths of the system
are also calculated. With these ingredients we calculate the ionization rate
for spin-polarized and for spin-isotropic samples, caused by anisotropy of the
long-range interactions. We find that spin-polarization may allow for four
orders of magnitude suppression of the ionization rate for Ne. The results
depend sensitively on a precise knowledge of the interaction potentials,
however, pointing out the need for experimental input. The same model gives a
suppression ratio close to unity for metastable xenon in accordance with
experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st
Systematic study of quasifission characteristics and timescales in heavy element formation reactions
Superheavy elements can only be created in the laboratory by the fusion of two massive nuclei. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission, the major competitor to fusion in these reactions. The systematics of 42 mass-angle distributions provide information on the global characteristics of quasifission. Deviations from the systematics reveal the major role played by the nuclear structure of the two colliding nuclei in determining the reaction outcome, and in hindering or favouring heavy element production.The authors acknowledge operations support for the ANU Heavy Ion Accelerator
Facility from NCRIS, and support from Dr. N. Lobanov and Dr. T.
Kibedi and the ANU Heavy Ion Accelerator Facility staff in operating the
Linac. Financial support from ARC grants DP130101569, DP140101337,
FL110100098, FT120100760 and DE140100784 is acknowledged
Focused Ion Beam Fabrication
Contains reports on ten research projects.U.S. Army Research Office Contract DAAL03-88-K-0108Hughes Research Laboratories FellowshipSEMATECHCharles S. Draper Laboratory Contract DL-H-261827U.S. Army Research Office Contract DAAL03-87-K-0126IBM General Technologies DivisionIBM Research Divisio
Nucleation of a sodium droplet on C60
We investigate theoretically the progressive coating of C60 by several sodium
atoms. Density functional calculations using a nonlocal functional are
performed for NaC60 and Na2C60 in various configurations. These data are used
to construct an empirical atomistic model in order to treat larger sizes in a
statistical and dynamical context. Fluctuating charges are incorporated to
account for charge transfer between sodium and carbon atoms. By performing
systematic global optimization in the size range 1<=n<=30, we find that Na_nC60
is homogeneously coated at small sizes, and that a growing droplet is formed
above n=>8. The separate effects of single ionization and thermalization are
also considered, as well as the changes due to a strong external electric
field. The present results are discussed in the light of various experimental
data.Comment: 17 pages, 10 figure
Focused Ion Beam Fabrication
Contains reports on thirteen research projects and a list of publications.Defense Advanced Research Projects Agency/U.S. Army Research Office Contract DAAL03-88-K-0108National Science Foundation Grant ECS 89-21728MIT Lincoln Laboratory Innovative Research ProgramSEMATECH Contract 90-MC-503Micrion Contract M08774U.S. Army Research Office Contract DAAL03-87-K-0126IBM Corporatio
- …
