32 research outputs found

    Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila – parasitoid communities

    Get PDF
    The analysis of interaction networks across spatial environmental gradients is a powerful approach to investigate the responses of communities to global change. Using a combination of DNA metabarcoding and traditional molecular methods we built bipartite Drosophila-parasitoid food webs from six Australian rainforest sites across gradients spanning 850 m in elevation and 5° Celsius in mean temperature. Our cost-effective hierarchical approach to network reconstruction separated the determination of host frequencies from the detection and quantification of interactions. The food webs comprised 5-9 host and 5-11 parasitoid species at each site, and showed a lower incidence of parasitism at high elevation. Despite considerable turnover in the relative abundance of host Drosophila species, and contrary to some previous results, we did not detect significant changes to fundamental metrics of network structure including nestedness and specialisation with elevation. Advances in community ecology depend on data from a combination of methodological approaches. It is therefore especially valuable to develop model study systems for sets of closely-interacting species that are diverse enough to be representative, yet still amenable to field and laboratory experiments

    Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila – parasitoid communities

    Get PDF
    The analysis of interaction networks across spatial environmental gradients is a powerful approach to investigate the responses of communities to global change. Using a combination of DNA metabarcoding and traditional molecular methods we built bipartite Drosophila – parasitoid food webs from six Australian rainforest sites across gradients spanning 850 m in elevation and 5°C in mean temperature. Our cost-effective hierarchical approach to network reconstruction separated the determination of host frequencies from the detection and quantification of interactions. The food webs comprised 5–9 host and 5–11 parasitoid species at each site, and showed a lower incidence of parasitism at high elevation. Despite considerable turnover in the relative abundance of host Drosophila species, and contrary to some previous results, we did not detect significant changes to fundamental metrics of network structure including nestedness and specialisation with elevation. Advances in community ecology depend on data from a combination of methodological approaches. It is therefore especially valuable to develop model study systems for sets of closely-interacting species that are diverse enough to be representative, yet still amenable to field and laboratory experiments

    Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients

    Get PDF
    Aim The present study aimed to evaluate the effects of gene variants in key genes influencing pharmacokinetic and pharmacodynamic of carbamazepine (CBZ) on the response in patients with epilepsy. Materials & Methods Five SNPs in two candidate genes influencing CBZ transport and metabolism, namely ABCB1 or EPHX1, and CBZ response SCN1A (sodium channel) were genotyped in 145 epileptic patients treated with CBZ as monotherapy and 100 age and sex matched healthy controls. Plasma concentrations of CBZ, carbamazepine-10,11-epoxide (CBZE) and carbamazepine-10,11-trans dihydrodiol (CBZD) were determined by HPLC-UV-DAD and adjusted for CBZ dosage/kg of body weight. Results The presence of the SCN1A IVS5-91G>A variant allele is associated with increased epilepsy susceptibility. Furthermore, carriers of the SCN1A IVS5-91G>A variant or of EPHX1 c.337T>C variant presented significantly lower levels of plasma CBZ compared to carriers of the common alleles (0.71±0.28 vs 1.11±0.69 μg/mL per mg/Kg for SCN1A IVS5-91 AA vs GG and 0.76±0.16 vs 0.94±0.49 μg/mL per mg/Kg for EPHX1 c.337 CC vs TT; PG showed a reduced microsomal epoxide hydrolase activity as reflected by a significantly decreased ratio of CBZD to CBZ (0.13±0.08 to 0.26±0.17, pT SNP and SCN1A 3148A>G variants were not associated with significant changes in CBZ pharmacokinetic. Patients resistant to CBZ treatment showed increased dosage of CBZ (657±285 vs 489±231 mg/day; P<0.001) but also increased plasma levels of CBZ (9.84±4.37 vs 7.41±3.43 μg/mL; P<0.001) compared to patients responsive to CBZ treatment. CBZ resistance was not related to any of the SNPs investigated. Conclusions The SCN1A IVS5-91G>A SNP is associated with susceptibility to epilepsy. SNPs in EPHX1 gene are influencing CBZ metabolism and disposition. CBZ plasma levels are not an indicator of resistance to the therapy

    Changes in dislocation substructure of S235JR steel during fatigue loading

    No full text
    Changes in dislocation substructure were studied in normalized and annealed S235JR steel in relation to the number of symmetrical reversed stress cycles with the amplitude σa = 242 MPa and corresponding mean life Nf = 17,950 cycles. The microstructure of the steel consisted of ferrite with a small amount of pearlite. The substructure was observed in as received condition and after application of various relative numbers of cycles n/Nf, these being 0.25, 0.50 and 0.75. An irregular dislocation net occurred in the virgin specimen, however, during cyclic loading the dislocations started to accumulate gradually in slip bands and to form a cell substructure in grains of favourable crystallographic orientations. Total dislocation density, dislocation density in slip bands and inter-band distance were measured using transmission electron microscopy (TEM). The total dislocation density was found to slightly decrease and the density in slip bands to increase with increasing number of cycles. The results concerning the dislocation density were compared with changes in the microplastic limit (MPL) which were determined by the measurement of the inductance of the “specimen - coil” system. They consisted in a rapid initial decrease at the first stage of the fatigue process and in a gradual increase during the major part of the life. These changes can be interpreted on the basis of changes in dislocation density as was verified independently by X-ray diffraction and nanoindentation tests. On the basis of the measurement of dislocation density by TEM it appears that changes in MPL can be connected with the dislocation density in slip bands rather than with the total dislocation density

    Effect of Blue Light on Endogenous Isopentenyladenine and Endoreduplication during Photomorphogenesis and De-Etiolation of Tomato (Solanum lycopersicum L.) Seedlings

    Get PDF
    Light is one of the most important factor influencing plant growth and development all through their life cycle. One of the well-known light-regulated processes is de-etiolation, i.e. the switch from skotomorphogenesis to photomorphogenesis. The hormones cytokinins (CKs) play an important role during the establishment of photomorphogenesis as exogenous CKs induced photomorphogenesis of dark-grown seedlings. Most of the studies are conducted on the plant model Arabidopsis, but no or few information are available for important crop species, such as tomato (Solanum lycopersicum L.). In our study, we analyzed for the first time the endogenous CKs content in tomato hypocotyls during skotomorphogenesis, photomorphogenesis and de-etiolation. For this purpose, two tomato genotypes were used: cv. Rutgers (wild-type; WT) and its corresponding mutant (7B-1) affected in its responses to blue light (BL). Using physiological and molecular approaches, we identified that the skotomorphogenesis is characterized by an endoreduplication-mediated cell expansion, which is inhibited upon BL exposure as seen by the accumulation of trancripts encoding CycD3, key regulators of the cell cycle. Our study showed for the first time that iP (isopentenyladenine) is the CK accumulated in the tomato hypocotyl upon BL exposure, suggesting its specific role in photomorphogenesis. This result was supported by physiological experiments and gene expression data. We propose a common model to explain the role and the relationship between CKs, namely iP, and endoreduplication during de-etiolation and photomorphogenesis
    corecore