214 research outputs found

    Randomized controlled trial investigating the effect of music on the virtual reality laparoscopic learning performance of novice surgeons

    Get PDF
    Background: Findings have shown that music affects cognitive performance, but little is known about its influence on surgical performance. The hypothesis of this randomized controlled trial was that arousing (activating) music has a beneficial effect on the surgical performance of novice surgeons in the setting of a laparoscopic virtual reality task. Methods: For this study, 45 junior surgeons with no previous laparoscopic experience were randomly assigned to three equal groups. Group 1 listened to activating music; group 2 listened to deactivating music; and group 3 had no music (control) while each participant solved a surgical task five times on a virtual laparoscopic simulator. The assessed global task score, the total task time, the instrument travel distances, and the surgeons' heart rate were assessed. Results: All surgical performance parameters improved significantly with experience (task repetition). The global score showed a trend for a between-groups difference, suggesting that the group listening to activating music had the worst performance. This observation was supported by a significant between-groups difference for the first trial but not subsequent trials (activating music, 35 points; deactivating music, 66 points; no music, 91 points; p=0.002). The global score (p=0.056) and total task time (p=0.065) showed a trend toward improvement when participants considered the music pleasant rather than unpleasant. Conclusions: Music in the operating theater may have a distracting effect on novice surgeons performing new tasks. Surgical trainers should consider categorically switching off music during teaching procedure

    A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging

    Get PDF
    A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm – for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar – and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex

    Nasal Chemosensory-Stimulation Evoked Activity Patterns in the Rat Trigeminal Ganglion Visualized by In Vivo Voltage-Sensitive Dye Imaging

    Get PDF
    Mammalian nasal chemosensation is predominantly mediated by two independent neuronal pathways, the olfactory and the trigeminal system. Within the early olfactory system, spatiotemporal responses of the olfactory bulb to various odorants have been mapped in great detail. In contrast, far less is known about the representation of volatile chemical stimuli at an early stage in the trigeminal system, the trigeminal ganglion (TG), which contains neurons directly projecting to the nasal cavity. We have established an in vivo preparation that allows high-resolution imaging of neuronal population activity from a large region of the rat TG using voltage-sensitive dyes (VSDs). Application of different chemical stimuli to the nasal cavity elicited distinct, stimulus-category specific, spatiotemporal activation patterns that comprised activated as well as suppressed areas. Thus, our results provide the first direct insights into the spatial representation of nasal chemosensory information within the trigeminal ganglion imaged at high temporal resolution

    Morphological brain differences between adult stutterers and non-stutterers

    Get PDF
    BACKGROUND: The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS) are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. METHODS: Adults with PDS (n = 10) and controls (n = 10) matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM) the brains of stutterers and non-stutterers were compared with respect to white matter (WM) and grey matter (GM) differences. RESULTS: We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale), the inferior frontal gyrus (including the pars triangularis), the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. CONCLUSIONS: These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question

    Aspects of the breeding biology of Janaira gracilis Moreira & Pires (Crustacea, Isopoda, Asellota)

    Get PDF
    The biological aspects of incubating females of Janaira gracilis Mbreira & Pires, are described. The marsupium is formed by 4 pairs of oostegites arising from pereopods I-IV. The oostegites appear for the first time at the post-marsupial stage 7 (preparatory stage 1), growing successively at each moult until stage 9 (brooding stage 1), when they reach fully development. The sizes of the eggs increase with the body size of the females. The number of eggs, per female, is a linear function of the body volume, i.e., the fecundity increases with the female's body size. The number of eggs, embryos and juveniles decrease during the marsupial development. This decrease in brood number is higher between the last two marsupial stages, i.e., from stage C to D, than between the preceding marsupial stages. The average and overall brood mortality rate is of 38.95%.São descritos, no presente trabalho, vários aspectos relacionados à biologia de fêmeas grávidas de Janaira gracilis Moreira & Pires. O marsúpio é formado por 4 pares de oostégitos, que partem dos pereópodos I-IV. Os oostégitos, que surgem pela primeira vez no estádio 7 do desenvolvimento pós-marsupial (estágio preparatório 1), crescem nas sucessivas mudas, atingindo no estágio 9 (estágio reprodutor 1) seu pleno desenvolvimento. O tamanho dos ovos é proporcional ao tamanho das fêmeas. O número de ovos, por fêmeas, e proporcional ao volume das fêmeas, isto é, a fecundidade é mais elevada nos exemplares de maior comprimento. O número de ovos, embriões e jovens decresce com o desenvolvimento marsupial, sendo este decréscimo maior entre os dois últimos estágios marsupials (i.é., entre os estágios C e D) do que entre os estágios precedentes. A taxa média de mortalidade marsupial é de 38.95%

    Interactivity and Reward-Related Neural Activation during a Serious Videogame

    Get PDF
    This study sought to determine whether playing a “serious” interactive digital game (IDG) – the Re-Mission videogame for cancer patients – activates mesolimbic neural circuits associated with incentive motivation, and if so, whether such effects stem from the participatory aspects of interactive gameplay, or from the complex sensory/perceptual engagement generated by its dynamic event-stream. Healthy undergraduates were randomized to groups in which they were scanned with functional magnetic resonance imaging (FMRI) as they either actively played Re-Mission or as they passively observed a gameplay audio-visual stream generated by a yoked active group subject. Onset of interactive game play robustly activated mesolimbic projection regions including the caudate nucleus and nucleus accumbens, as well as a subregion of the parahippocampal gyrus. During interactive gameplay, subjects showed extended activation of the thalamus, anterior insula, putamen, and motor-related regions, accompanied by decreased activation in parietal and medial prefrontal cortex. Offset of interactive gameplay activated the anterior insula and anterior cingulate. Between-group comparisons of within-subject contrasts confirmed that mesolimbic activation was significantly more pronounced in the active playgroup than in the passive exposure control group. Individual difference analyses also found the magnitude of parahippocampal activation following gameplay onset to correlate with positive attitudes toward chemotherapy assessed both at the end of the scanning session and at an unannounced one-month follow-up. These findings suggest that IDG-induced activation of reward-related mesolimbic neural circuits stems primarily from participatory engagement in gameplay (interactivity), rather than from the effects of vivid and dynamic sensory stimulation

    The Role of Superior Temporal Cortex in Auditory Timing

    Get PDF
    Recently, there has been upsurge of interest in the neural mechanisms of time perception. A central question is whether the representation of time is distributed over brain regions as a function of stimulus modality, task and length of the duration used or whether it is centralized in a single specific and supramodal network. The answers seem to be converging on the former, and many areas not primarily considered as temporal processing areas remain to be investigated in the temporal domain. Here we asked whether the superior temporal gyrus, an auditory modality specific area, is involved in processing of auditory timing. Repetitive transcranial magnetic stimulation was applied over left and right superior temporal gyri while participants performed either a temporal or a frequency discrimination task of single tones. A significant decrease in performance accuracy was observed after stimulation of the right superior temporal gyrus, in addition to an increase in response uncertainty as measured by the Just Noticeable Difference. The results are specific to auditory temporal processing and performance on the frequency task was not affected. Our results further support the idea of distributed temporal processing and speak in favor of the existence of modality specific temporal regions in the human brain

    Integration of Consonant and Pitch Processing as Revealed by the Absence of Additivity in Mismatch Negativity

    Get PDF
    Consonants, unlike vowels, are thought to be speech specific and therefore no interactions would be expected between consonants and pitch, a basic element for musical tones. The present study used an electrophysiological approach to investigate whether, contrary to this view, there is integrative processing of consonants and pitch by measuring additivity of changes in the mismatch negativity (MMN) of evoked potentials. The MMN is elicited by discriminable variations occurring in a sequence of repetitive, homogeneous sounds. In the experiment, event-related potentials (ERPs) were recorded while participants heard frequently sung consonant-vowel syllables and rare stimuli deviating in either consonant identity only, pitch only, or in both dimensions. Every type of deviation elicited a reliable MMN. As expected, the two single-deviant MMNs had similar amplitudes, but that of the double-deviant MMN was also not significantly different from them. This absence of additivity in the double-deviant MMN suggests that consonant and pitch variations are processed, at least at a pre-attentive level, in an integrated rather than independent way. Domain-specificity of consonants may depend on higher-level processes in the hierarchy of speech perception
    corecore