140 research outputs found

    Atomic Beam Research

    Get PDF
    Contains reports on one research project

    Magnetic versus nonmagnetic doping effects on the magnetic ordering in the Haldane chain compound PbNi2V2O8

    Full text link
    A study of an impurity driven phase-transition into a magnetically ordered state in the spin-liquid Haldane chain compound PbNi2V2O8 is presented. Both, macroscopic magnetization as well as 51V nuclear magnetic resonance (NMR) measurements reveal that the spin nature of dopants has a crucial role in determining the stability of the induced long-range magnetic order. In the case of nonmagnetic (Mg2+) doping on Ni2+ spin sites (S=1) a metamagnetic transition is observed in relatively low magnetic fields. On the other hand, the magnetic order in magnetically (Co2+) doped compounds survives at much higher magnetic fields and temperatures, which is attributed to a significant anisotropic impurity-host magnetic interaction. The NMR measurements confirm the predicted staggered nature of impurity-liberated spin degrees of freedom, which are responsible for the magnetic ordering. In addition, differences in the broadening of the NMR spectra and the increase of nuclear spin-lattice relaxation in doped samples, indicate a diverse nature of electron spin correlations in magnetically and nonmagnetically doped samples, which begin developing at rather high temperatures with respect to the antiferromagnetic phase transition.Comment: 10 pages, 7 figure

    Atomic Beam Research

    Get PDF
    Contains reports on three research projects

    NMR and dc-susceptibility studies of NaVGe2O6

    Full text link
    We report the results of measurements of the dc magnetic susceptibility chi(T) and of the 23Na nuclear magnetic resonance (NMR) response of NaVGe2O6, a material in which the V ions form a network of interacting one-dimensional spin S=1 chains. The experiments were made at temperatures between 2.5 and 300 K. The chi(T) data suggest that the formation of the expected low-temperature Haldane phase is intercepted by an antiferromagnetic phase transition at 18 K. The transition is also reflected in the 23Na NMR spectra and the corresponding spin-lattice relaxation rate 1/T1(T). In the ordered phase, 1/T1(T) decreases by orders of magnitude with decreasing temperature, indicating the formation of a gap of the order of 12 K in the magnetic excitation spectrum.Comment: 10 pages, 15 figures; v2 with minor revisions of the tex

    ^{17}O and ^{51}V NMR for the zigzag spin-1 chain compound CaV2O4

    Get PDF
    51^{51}V NMR studies on CaV2O4 single crystals and 17^{17}O NMR studies on 17^{17}O-enriched powder samples are reported. The temperature dependences of the 17^{17}O NMR line width and nuclear spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in the powder. Magnetic susceptibility measurements show that Tn = 69 K in the crystals. A zero-field 51^{51}V NMR signal was observed at low temperatures (f \approx 237 MHz at 4.2 K) in the crystals. The field swept spectra with the field in different directions suggest the presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy axes of the two substructures separated by an angle of 19(1) degree, and with their average direction pointing approximately along the b-axis of the crystal structure. The two spin substructures contain equal number of spins. The temperature dependence of the ordered moment, measured up to 45 K, shows the presence of an energy gap Eg in the antiferromagnetic spin wave excitation spectrum. Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.Comment: 11 pages, 14 figures. v2: 2 new figures; version published in Phys. Rev.

    Elastic properties of FeSi

    Full text link
    Measurements of the sound velocities in a single crystal of FeSi were performed in the temperature range 4-300 K. Elastic constants C12C_{12} and C44C_{44} deviate from a quasiharmonic behavior at high temperature; whereas, C12C_{12} increases anomalously in the entire range of temperature, indicating a change in the electron structure of this materia

    Atomic Beam Research

    Get PDF
    Contains reports on one research project

    Thermal and Dynamical Properties of the Two-band Hubbard Model Compared with FeSi

    Full text link
    We study the two-band Hubbard model introduced by Fu and Doniach as a model for FeSi which is suggested to be a Kondo insulator. Using the self-consistent second-order perturbation theory combined with the local approximation which becomes exact in the limit of infinite dimensions, we calculate the specific heat, the spin susceptibility and the dynamical conductivity and point out that the reduction of the energy gap due to correlation is not significant in contrast to the previous calculation. It is also demonstrated that the gap at low temperatures in the optical conductivity is filled up at a rather low temperature than the gap size, which is consistent with the experiment.Comment: 6 pages, LaTeX, 7 PS figures included, uses RevTe

    Correlation functions in the two-dimensional random-field Ising model

    Full text link
    Transfer-matrix methods are used to study the probability distributions of spin-spin correlation functions GG in the two-dimensional random-field Ising model, on long strips of width L=315L = 3 - 15 sites, for binary field distributions at generic distance RR, temperature TT and field intensity h0h_0. For moderately high TT, and h0h_0 of the order of magnitude used in most experiments, the distributions are singly-peaked, though rather asymmetric. For low temperatures the single-peaked shape deteriorates, crossing over towards a double-δ\delta ground-state structure. A connection is obtained between the probability distribution for correlation functions and the underlying distribution of accumulated field fluctuations. Analytical expressions are in good agreement with numerical results for R/L1R/L \gtrsim 1, low TT, h0h_0 not too small, and near G=1. From a finite-size {\it ansatz} at T=Tc(h0=0)T=T_c (h_0=0), h00h_0 \to 0, averaged correlation functions are predicted to scale with Lyh0L^y h_0, y=7/8y =7/8. From numerical data we estimate y=0.875 \pm 0.025,inexcellentagreementwiththeory.Inthesameregion,theRMSrelativewidth, in excellent agreement with theory. In the same region, the RMS relative width Woftheprobabilitydistributionsvariesforfixed of the probability distributions varies for fixed R/L=1as as W \sim h_0^{\kappa} f(L h_0^u)with with \kappa \simeq 0.45,, u \simeq 0.8; ; f(x)appearstosaturatewhen appears to saturate when x \to \infty,thusimplying, thus implying W \sim h_0^{\kappa}in in d=2$.Comment: RevTeX code for 8 pages, 7 eps figures, to appear in Physical Review E (1999

    Interesting magnetic properties of Fe1x_{1-x}Cox_xSi alloys

    Full text link
    Solid solution between nonmagnetic narrow gap semiconductor FeSi and diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with long-range helical magnetic ordering, for a wide range of intermediate concentration. We report various interesting magnetic properties of these alloys, including low temperature re-entrant spin-glass like behaviour and a novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya interaction in the magnetic response of these non-centrosymmetric alloys is discussed.Comment: 11 pages and 3 figure
    corecore