326 research outputs found
Theory of Fast Electron Transport for Fast Ignition
Fast Ignition Inertial Confinement Fusion is a variant of inertial fusion in
which DT fuel is first compressed to high density and then ignited by a
relativistic electron beam generated by a fast (< 20 ps) ultra-intense laser
pulse, which is usually brought in to the dense plasma via the inclusion of a
re-entrant cone. The transport of this beam from the cone apex into the dense
fuel is a critical part of this scheme, as it can strongly influence the
overall energetics. Here we review progress in the theory and numerical
simulation of fast electron transport in the context of Fast Ignition.
Important aspects of the basic plasma physics, descriptions of the numerical
methods used, a review of ignition-scale simulations, and a survey of schemes
for controlling the propagation of fast electrons are included. Considerable
progress has taken place in this area, but the development of a robust,
high-gain FI `point design' is still an ongoing challenge.Comment: 78 pages, 27 figures, review article submitted to Nuclear Fusio
Vlasov Simulations of Trapping and Inhomogeneity in Raman Scattering
We study stimulated Raman scattering (SRS) in laser-fusion conditions with
the Eulerian Vlasov code ELVIS. Back SRS from homogeneous plasmas occurs in
sub-picosecond bursts and far exceeds linear theory. Forward SRS and re-scatter
of back SRS are also observed. The plasma wave frequency downshifts from the
linear dispersion curve, and the electron distribution shows flattening. This
is consistent with trapping and reduces the Landau damping. There is some
acoustic () activity and possibly electron acoustic scatter.
Kinetic ions do not affect SRS for early times but suppress it later on. SRS
from inhomogeneous plasmas exhibits a kinetic enhancement for long density
scale lengths. More scattering results when the pump propagates to higher as
opposed to lower density.Comment: 4 pages, 6 figures. Submitted to "Journal of Plasmas Physics" for the
conference proceedings of the 19th International Conference on Numerical
Simulation of Plasma
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic
enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in
regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is
transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73,
025401 (2006)]. For the first time, a low phase velocity electron acoustic wave
(EAW) is seen developing from the self-consistent Raman physics. Backscatter of
the pump laser off the EAW fluctuations is reported and referred to as electron
acoustic Thomson scatter. This light is similar in wavelength to, although much
lower in amplitude than, the reflected light between the pump and SRBS
wavelengths observed in single hot spot experiments, and previously interpreted
as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev.
Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched
frequency for electron acoustic scatter, and therefore the EAW is not produced
by it. The beating of different beam acoustic modes is proposed as the EAW
excitation mechanism, and is called beam acoustic decay. Supporting evidence
for this process, including bispectral analysis, is presented. The linear
electrostatic modes, found by projecting the numerical distribution function
onto a Gauss-Hermite basis, include beam acoustic modes (some of which are
unstable even without parametric coupling to light waves) and a strongly-damped
EAW similar to the observed one. This linear EAW results from non-Maxwellian
features in the electron distribution, rather than nonlinearity due to electron
trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006
Fast-ignition design transport studies: realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields
Transport modeling of idealized, cone-guided fast ignition targets indicates
the severe challenge posed by fast-electron source divergence. The hybrid
particle-in-cell [PIC] code Zuma is run in tandem with the
radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel
heating, and thermonuclear burn. The fast electron source is based on a 3D
explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi
two-temperature energy spectrum, and a divergent angle spectrum (average
velocity-space polar angle of 52 degrees). Transport simulations with the
PIC-based divergence do not ignite for > 1 MJ of fast-electron energy, for a
modest 70 micron standoff distance from fast-electron injection to the dense
fuel. However, artificially collimating the source gives an ignition energy of
132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields.
Uniform fields ~50 MG are sufficient to recover the artificially collimated
ignition energy. Experiments at the Omega laser facility have generated fields
of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such
imploded fields are however more compressed in the transport region than in the
laser absorption region. When fast electrons encounter increasing field
strength, magnetic mirroring can reflect a substantial fraction of them and
reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite
radius, is presented as one field configuration which circumvents mirroring.Comment: 16 pages, 17 figures, submitted to Phys. Plasma
Effect of Laser-Plasma Interactions on Inertial Fusion Hydrodynamics
The effects of laser-plasma interactions (LPI) on the dynamics of inertial
confinement fusion hohlraums is investigated via a new approach that
self-consistently couples reduced LPI models into radiation-hydrodynamics
numerical codes. The interplay between hydrodynamics and LPI -- specifically
stimulated Raman scatter (SRS) and crossed-beam energy transfer (CBET) --
mostly occurs via momentum and energy deposition into Langmuir and ion acoustic
waves. This spatially redistributes energy coupling to the target, which
affects the background plasma conditions and thus modifies laser propagation.
This model shows reduced CBET, and significant laser energy depletion by
Langmuir waves, which reduce the discrepancy between modeling and data from
hohlraum experiments on wall x-ray emission and capsule implosion shape.Comment: 5 pages, 7 figures, accepted by Physical Review Letter
Ray-based calculations of backscatter in laser fusion targets
A 1D, steady-state model for Brillouin and Raman backscatter from an
inhomogeneous plasma is presented. The daughter plasma waves are treated in the
strong damping limit, and have amplitudes given by the (linear) kinetic
response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung
damping, bremsstrahlung emission, Thomson scattering off density fluctuations,
and whole-beam focusing are included. The numerical code DEPLETE, which
implements this model, is described. The model is compared with traditional
linear gain calculations, as well as "plane-wave" simulations with the paraxial
propagation code pF3D. Comparisons with Brillouin-scattering experiments at the
OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)]
show that laser speckles greatly enhance the reflectivity over the DEPLETE
results. An approximate upper bound on this enhancement, motivated by phase
conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis
with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J.
A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755
(1994)], with a peak radiation temperature of 285 eV, shows encouragingly low
reflectivity. Re-absorption of Raman light is seen to be significant in this
design.Comment: 16 pages, 19 figure
- …
