2,833 research outputs found
Economic and demographic issues related to deployment of the Satellite Power System (SPS)
Growth in energy consumption stimulated interest in exploitation of renewable sources of electric energy. One technology that was proposed is the Satellite Power System (SPS). Before committing the U.S. to such a large program, the Department of Energy and the National Aeronautics and Space Administration are jointly participating in an SPS Concept Development and Evaluation Program. This white paper on industrial and population relocation is part of the FY 78 preliminary evaluation of related socio-economic issues. Results of four preliminary assessment activities are documented
The Prospects for Hybrid Electric Vehicles, 2005-2020: Results of a Delphi Study
The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized
Comparison of VLBI, TV and traveling clock techniques for time transfer
A three part experiment was conducted to develop and compare time transfer techniques. The experiment consisted of (1) a very long baseline interferometer (VLBI), (2) a high precision portable clock time transfer system between the two sites, and (3) a television time transfer. A comparison of the VLBI and traveling clock shows each technique can perform satisfactorily at the five nsec level. There was a systematic offset of 59 nsec between the two methods, which we attributed to a difference in epochs between VLBI formatter and station clock. The VLBI method had an internal random error of one nsec at the three sigma level for a two day period. Thus, the Mark II system performed well, and VLBI shows promise of being an accurate method of time transfer. The TV system, which had technical problems during the experiment, transferred time with a random error of about 50 nsec
Multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I
We propose an algorithmic procedure i) to study the ``distance'' between an
integrable PDE and any discretization of it, in the small lattice spacing
epsilon regime, and, at the same time, ii) to test the (asymptotic)
integrability properties of such discretization. This method should provide, in
particular, useful and concrete informations on how good is any numerical
scheme used to integrate a given integrable PDE. The procedure, illustrated on
a fairly general 10-parameter family of discretizations of the nonlinear
Schroedinger equation, consists of the following three steps: i) the
construction of the continuous multiscale expansion of a generic solution of
the discrete system at all orders in epsilon, following the Degasperis -
Manakov - Santini procedure; ii) the application, to such expansion, of the
Degasperis - Procesi (DP) integrability test, to test the asymptotic
integrability properties of the discrete system and its ``distance'' from its
continuous limit; iii) the use of the main output of the DP test to construct
infinitely many approximate symmetries and constants of motion of the discrete
system, through novel and simple formulas.Comment: 34 pages, no figur
Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics
One of the most controversial phenomena in nonlinear dynamics is the reappearance of initial
conditions. Celebrated as the Fermi-Pasta-Ulam-Tsingou problem, the attempt to understand how these
recurrences form during the complex evolution that leads to equilibrium has deeply influenced the entire
development of nonlinear science. The enigma is rendered even more intriguing by the fact that integrable
models predict recurrence as exact solutions, but the difficulties involved in upholding integrability for a
sufficiently long dynamic has not allowed a quantitative experimental validation. In natural processes,
coupling with the environment rapidly leads to thermalization, and finding nonlinear multimodal systems
presenting multiple returns is a long-standing open challenge. Here, we report the observation of more than
three Fermi-Pasta-Ulam-Tsingou recurrences for nonlinear optical spatial waves and demonstrate the
control of the recurrent behavior through the phase and amplitude of the initial field. The recurrence period
and phase shift are found to be in remarkable agreement with the exact recurrent solution of the nonlinear
Schrödinger equation, while the recurrent behavior disappears as integrability is lost. These results identify
the origin of the recurrence in the integrability of the underlying dynamics and allow us to achieve one of
the basic aspirations of nonlinear dynamics: the reconstruction, after several return cycles, of the exact
initial condition of the system, ultimately proving that the complex evolution can be accurately predicted in
experimental conditions
Predicting Nesting Habitat of Northern Goshawks in Mixed Aspen-Lodgepole Pine Forests in a High-Elevation Shrub-Steppe Dominated Landscape
We developed a habitat suitability model for predicting nest locations of breeding Northern Goshawks (Accipiter gentilis) in the high-elevation mixed forest and shrub-steppe habitat of south-central Idaho, USA. We used elevation, slope, aspect, ruggedness, distance-to-water, canopy cover, and individual bands of Landsat imagery as predictors for known nest locations with logistic regression. We found goshawks prefer to nest in gently-sloping, east-facing, non-rugged areas of dense aspen and lodgepole pine forests with low reflectance in green (0.53 - 0.61 μm) wavelengths during the breeding season. We used the model results to classify our 43,169 hectare study area into nesting suitability categories: well suited (8.8%), marginally suited (5.1%), and poorly suited (86.1%). We evaluated our model’s performance by comparing the modeled results to a set of GPS locations of known nests (n = 15) that were not used to develop the model. Observed nest locations matched model results 93.3% of the time for well suited habitat and fell within poorly suited areas only 6.7% of the time. Our method improves on goshawk nesting models developed previously by others and may be applicable for surveying goshawks in adjacent mountain ranges across the northern Great Basin
Triple-q octupolar ordering in NpO_2
We report the results of resonant X-ray scattering experiments performed at
the Np M_4,5 edges in NpO_2. Below T_0 = 25 K, the development of long-range
order of Np electric quadrupoles is revealed by the growth of superlattice
Bragg peaks. The electronic transition is not accompanied by any measurable
crystallographic distortion, either internal or external, so the symmetry of
the system remains cubic. The polarization and azimuthal dependence of the
intensity of the resonant peaks is well reproduced assuming Templeton
scattering from a triple-q longitudinal antiferroquadrupolar structure.
Electric quadrupole order in NpO_2 could be driven by the ordering at T_0 of
magnetic octupoles of Gamma_5 symmetry, splitting the Np ground state quartet
and leading to a singlet ground state with zero dipole magnetic moment.Comment: 4 Pages, 3 Figures, submitted to Phys. Rev. Lett. v2: resubmitted
after referee report
Segmented Band Mechanism for Itinerant Ferromagnetism
We introduce a novel mechanism for itinerant ferromagnetism, which is based
on a simple two-band model, and using numerical and analytical methods, we show
that the Periodic Anderson Model (PAM) contains this mechanism. We propose that
the mechanism, which does not assume an intra-atomic Hund's coupling, is
present in both the iron group and some electron compounds
Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles
The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in
which, typically beginning from single tiles, arbitrarily large aggregations of
static tiles combine in pairs to form structures. The Signal-passing Tile
Assembly Model (STAM) is an extension of the 2HAM in which the tiles are
dynamically changing components which are able to alter their binding domains
as they bind together. For our first result, we demonstrate useful techniques
and transformations for converting an arbitrarily complex STAM tile set
into an STAM tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of ``signals'' they can send, with
a trade off in scale factor.
Using these simplifications, we prove that for each temperature
there exists a 3D tile set in the 2HAM which is intrinsically universal for the
class of all 2D STAM systems at temperature (where the STAM does
not make use of the STAM's power of glue deactivation and assembly breaking, as
the tile components of the 2HAM are static and unable to change or break
bonds). This means that there is a single tile set in the 3D 2HAM which
can, for an arbitrarily complex STAM system , be configured with a
single input configuration which causes to exactly simulate at a scale
factor dependent upon . Furthermore, this simulation uses only two planes of
the third dimension. This implies that there exists a 3D tile set at
temperature in the 2HAM which is intrinsically universal for the class of
all 2D STAM systems at temperature . Moreover, we show that for each
temperature there exists an STAM tile set which is intrinsically
universal for the class of all 2D STAM systems at temperature ,
including the case where .Comment: A condensed version of this paper will appear in a special issue of
Natural Computing for papers from DNA 19. This full version contains proofs
not seen in the published versio
- …