78 research outputs found
Epidemiology and risk factors for Staphylococcus aureus colonization in children in the post-PCV7 era
<p>Abstract</p> <p>Background</p> <p>The incidence of community-associated methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) has risen dramatically in the U.S., particularly among children. Although <it>Streptococcus pneumoniae </it>colonization has been inversely associated with <it>S. aureus </it>colonization in unvaccinated children, this and other risk factors for <it>S. aureus </it>carriage have not been assessed following widespread use of the heptavalent pneumococcal conjugate vaccine (PCV7). Our objectives were to (1) determine the prevalence of <it>S. aureus </it>and MRSA colonization in young children in the context of widespread use of PCV7; and (2) examine risk factors for <it>S. aureus </it>colonization in the post-PCV7 era, including the absence of vaccine-type <it>S. pneumoniae </it>colonization.</p> <p>Methods</p> <p>Swabs of the anterior nares (<it>S. aureus</it>) were obtained from children enrolled in an ongoing study of nasopharyngeal pneumococcal colonization of healthy children in 8 Massachusetts communities. Children 3 months to <7 years of age seen for well child or sick visits in primary care offices from 11/03–4/04 and 10/06–4/07 were enrolled. <it>S. aureus </it>was identified and antibiotic susceptibility testing was performed. Epidemiologic risk factors for <it>S. aureus </it>colonization were collected from parent surveys and chart reviews, along with data on pneumococcal colonization. Multivariate mixed model analyses were performed to identify factors associated with <it>S. aureus </it>colonization.</p> <p>Results</p> <p>Among 1,968 children, the mean age (SD) was 2.7 (1.8) years, 32% received an antibiotic in the past 2 months, 2% were colonized with PCV7 strains and 24% were colonized with non-PCV7 strains. The prevalence of <it>S. aureus </it>colonization remained stable between 2003–04 and 2006–07 (14.6% vs. 14.1%), while MRSA colonization remained low (0.2% vs. 0.9%, p = 0.09). Although absence of pneumococcal colonization was not significantly associated with <it>S. aureus </it>colonization, age (6–11 mo vs. ≥5 yrs, OR 0.39 [95% CI 0.24–0.64]; 1–1.99 yrs vs. ≥5 yrs, OR 0.35 [0.23–0.54]; 2–2.99 yrs vs. ≥5 yrs, OR 0.45 [0.28–0.73]; 3–3.99 yrs vs. ≥5 yrs, OR 0.53 [0.33–0.86]) and recent antibiotic use were significant predictors in multivariate models.</p> <p>Conclusion</p> <p>In Massachusetts, <it>S. aureus </it>and MRSA colonization remained stable from 2003–04 to 2006–07 among children <7 years despite widespread use of pneumococcal conjugate vaccine. <it>S. aureus </it>nasal colonization varies by age and is inversely correlated with recent antibiotic use.</p
Quinupristin-Dalfopristin Resistance in Enterococcus faecium Isolates from Humans, Farm Animals, and Grocery Store Meat in the United States
Three hundred sixty-one quinupristin-dalfopristin (Q-D)-resistant Enterococcus faecium (QDREF) isolates were isolated from humans, turkeys, chickens, swine, dairy and beef cattle from farms, chicken carcasses, and ground pork from grocery stores in the United States from 1995 to 2003. These isolates were evaluated by pulsed-field gel electrophoresis (PFGE) to determine possible commonality between QDREF isolates from human and animal sources. PCR was performed to detect the streptogramin resistance genes vatD, vatE, and vgbA and the macrolide resistance gene ermB to determine the genetic mechanism of resistance in these isolates. QDREF from humans did not have PFGE patterns similar to those from animal sources. vatE was found in 35%, 26%, and 2% of QDREF isolates from turkeys, chickens, and humans, respectively, and was not found in QDREF isolates from other sources. ermB was commonly found in QDREF isolates from all sources. Known streptogramin resistance genes were absent in the majority of isolates, suggesting the presence of other, as-yet-undetermined, mechanisms of Q-D resistance
- …