3,601 research outputs found
Dynamics of sliding drops on superhydrophobic surfaces
We use a free energy lattice Boltzmann approach to investigate numerically
the dynamics of drops moving across superhydrophobic surfaces. The surfaces
comprise a regular array of posts small compared to the drop size. For drops
suspended on the posts the velocity increases as the number of posts decreases.
We show that this is because the velocity is primarily determined by the
contact angle which, in turn, depends on the area covered by posts. Collapsed
drops, which fill the interstices between the posts, behave in a very different
way. The posts now impede the drop behaviour and the velocity falls as their
density increases.Comment: 7 pages, 4 figures, accepted for publication in Europhys. Let
Jetting Micron-Scale Droplets onto Chemically Heterogeneous Surfaces
We report experiments investigating the behaviour of micron-scale fluid
droplets jetted onto surfaces patterned with lyophobic and lyophilic stripes.
The final droplet shape depends on the droplet size relative to that of the
stripes. In particular when the droplet radius is of the same order as the
stripe width, the final shape is determined by the dynamic evolution of the
drop and shows a sensitive dependence on the initial droplet position and
velocity. Numerical solutions of the dynamical equations of motion of the drop
provide a close quantitative match to the experimental results. This proves
helpful in interpreting the data and allows for accurate prediction of fluid
droplet behaviour for a wide range of surfaces.Comment: 14 pages, accepted for publication in Langmui
Rheology of cholesteric blue phases
Blue phases of cholesteric liquid crystals offer a spectacular example of
naturally occurring disclination line networks. Here we numerically solve the
hydrodynamic equations of motion to investigate the response of three types of
blue phases to an imposed Poiseuille flow. We show that shear forces bend and
twist and can unzip the disclination lines. Under gentle forcing the network
opposes the flow and the apparent viscosity is significantly higher than that
of an isotropic liquid. With increased forcing we find strong shear thinning
corresponding to the disruption of the defect network. As the viscosity starts
to drop, the imposed flow sets the network into motion. Disclinations break-up
and re-form with their neighbours in the flow direction. This gives rise to
oscillations in the time-dependent measurement of the average stress.Comment: 4 pages, 4 figure
Control of drop positioning using chemical patterning
We explore how chemical patterning on surfaces can be used to control drop
wetting. Both numerical and experimental results are presented to show how the
dynamic pathway and equilibrium shape of the drops are altered by a hydrophobic
grid. The grid proves a successful way of confining drops and we show that it
can be used to alleviate {\it mottle}, a degradation in image quality which
results from uneven drop coalescence due to randomness in the positions of the
drops within the jetted array.Comment: 3 pages, 4 figure
Parameter-free Stark Broadening of Hydrogen Lines in DA White Dwarfs
We present new calculations for the Stark broadening of the hydrogen line
profiles in the dense atmospheres of white dwarf stars. Our improved model is
based on the unified theory of Stark broadening from Vidal, Cooper & Smith, but
it also includes non-ideal gas effects from the Hummer & Mihalas occupation
probability formalism directly inside the line profile calculations. This
approach improves upon previous calculations that relied on the use of an
ad-hoc free parameter to describe the dissolution of the line wing opacity in
the presence of high electric microfields in the plasma. We present here the
first grid of model spectra for hot Teff >~ 12,000 K DA white dwarfs that has
no free parameters. The atmospheric parameters obtained from optical and UV
spectroscopic observations using these improved models are shown to differ
substantially from those published in previous studies.Comment: 8 pages, 8 figures, to appear in Journal of Physics Conference
Proceedings for the 16th European White Dwarf Worksho
The Ultramassive White Dwarf EUVE J1746-706
We have obtained new optical and extreme ultraviolet (EUV) spectroscopy of
the ultramassive white dwarf EUVE J1746-706. We revise Vennes et al.'s (1996a,
ApJ, 467, 784) original estimates of the atmospheric parameters and we measure
an effective temperature of 46,500 +/- 700 K and a surface gravity log g = 9.05
+/- 0.15 (~1.2 M_o), in agreement with Balmer line profiles and the EUV
continuum. We derive an upper limit on the atmospheric abundance of helium of
He/H = 1.3 x 10^{-4} and a neutral hydrogen column density in the local
interstellar medium N_HI = 1.8 +/- 0.4 x 10^{19} cm^{-2} from the EUV spectrum.
Our upper limit corresponds to half the helium abundance observed in the
atmosphere of the ultramassive white dwarf GD 50. We discuss the possibility
that EUVE J1746-706 represents an earlier phase of evolution relative to GD 50
and may, therefore, help us understand the origin and evolution of massive
white dwarfs.Comment: 6 pages, 4 postscript figures, uses aastex, to be published in ApJ
Letter
A Renormalization group approach for highly anisotropic 2D Fermion systems: application to coupled Hubbard chains
I apply a two-step density-matrix renormalization group method to the
anisotropic two-dimensional Hubbard model. As a prelude to this study, I
compare the numerical results to the exact one for the tight-binding model. I
find a ground-state energy which agrees with the exact value up to four digits
for systems as large as . I then apply the method to the
interacting case. I find that for strong Hubbard interaction, the ground-state
is dominated by magnetic correlations.
These correlations are robust even in the presence of strong frustration.
Interchain pair tunneling is negligible in the singlet and triplet channels and
it is not enhanced by frustration. For weak Hubbard couplings, interchain
non-local singlet pair tunneling is enhanced and magnetic correlations are
strongly reduced. This suggests a possible superconductive ground state.Comment: 8 pages, 11 figures, expanded version of cond-mat/060856
Dimensional crossover and metal-insulator transition in quasi-two-dimensional disordered conductors
We study the metal-insulator transition (MIT) in weakly coupled disordered
planes on the basis of a Non-Linear Sigma Model (NLM). Using two
different methods, a renormalization group (RG) approach and an auxiliary field
method, we calculate the crossover length between a 2D regime at small length
scales and a 3D regime at larger length scales. The 3D regime is described by
an anisotropic 3D NLM with renormalized coupling constants. We obtain
the critical value of the single particle interplane hopping which separates
the metallic and insulating phases. We also show that a strong parallel
magnetic field favors the localized phase and derive the phase diagram.Comment: 16 pages (RevTex), 4 poscript figure
- …