2,363 research outputs found

    A description of n-ary semigroups polynomial-derived from integral domains

    Get PDF
    We provide a complete classification of the n-ary semigroup structures defined by polynomial functions over infinite commutative integral domains with identity, thus generalizing G{\l}azek and Gleichgewicht's classification of the corresponding ternary semigroups

    Scattering processes and resonances from lattice QCD

    Get PDF
    The vast majority of hadrons observed in nature are not stable under the strong interaction, rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy non-perturbative region, and in addition, many probes of the limits of the electroweak sector of the Standard Model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required non-perturbative evaluation of hadron observables. In this article, we review progress in the study of few-hadron reactions in which resonances and bound-states appear using lattice QCD techniques. We describe the leading approach which takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. We explain how from explicit lattice QCD calculations, one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them

    Time-odd components in the rotating mean field and identical bands

    Get PDF
    A systematic construction of the energy-density functional within the local density approximation is presented. The Hartree-Fock equations corresponding to such a functional are solved in case of rotating superdeformed nuclei. The identical bands in ^{152}Dy, ^{151}Tb, and ^{150}Gd are investigated and the time-odd components in the rotating mean field are analyzed

    Solid weak BCC-algebras

    Full text link
    We characterize weak BCC-algebras in which the identity (xy)z=(xz)y(xy)z=(xz)y is satisfied only in the case when elements x,yx,y belong to the same branch

    Experimental Status of Exotic Mesons and the GlueX Experiment

    Get PDF
    One of the unanswered and most fundamental questions in physics regards the nature of the confinement mechanism of quarks and gluons in QCD. Exotic hybrid mesons manifest gluonic degrees of freedom and their spectroscopy will provide the data necessary to test assumptions in lattice QCD and the specific phenomenology leading to confinement. Within the past two decades a number of experiments have put forth tantalizing evidence for the existence of exotic hybrid mesons in the mass range below 2 GeV. This talk represents an overview of the available data and what has been learned. In looking toward the future, the GlueX experiment at Jefferson Laboratory represents a new initiative that will perform detailed spectroscopy of the light-quark meson spectrum. This experiment and its capabilities will be reviewed.Comment: 10 pages, 8 figures, 2nd Meeting of the APS Topical Group on Hadron Physics GHP06, Nashville, TN (10/22-10/24/06

    Associative polynomial functions over bounded distributive lattices

    Get PDF
    The associativity property, usually defined for binary functions, can be generalized to functions of a given fixed arity n>=1 as well as to functions of multiple arities. In this paper, we investigate these two generalizations in the case of polynomial functions over bounded distributive lattices and present explicit descriptions of the corresponding associative functions. We also show that, in this case, both generalizations of associativity are essentially the same.Comment: Final versio

    Calculation of Turbulent Subsonic Diffuser Flows Using the NPARC Navier-Stokes Code

    Get PDF
    Axisymmetric subsonic diffuser flows were calculated with the NPARC Navier-Stokes code in order to determine the effects various code features have on the flow solutions. The code features examined in this work were turbulence models and boundary conditions. Four turbulence models available in NPARC were used: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, and the Chien kappa-epsilon and Wilcox kappa-omega two-equation models. The three boundary conditions examined were the free boundary, the mass flux boundary and the subsonic outflow with variable static pressure. In addition to boundary condition type, the geometry downstream of the diffuser was varied to see if upstream influences were present. The NPARC results are compared with experimental data and recommendations are given for using NPARC to compute similar flows
    • …
    corecore