3,118 research outputs found
Longitudinal changes in resting-state fMRI from age 5 to age 6 years covary with language development
Resting-state functional magnetic resonance imaging is a powerful technique to study the whole-brain neural connectivity that underlies cognitive systems. The present study aimed to define the changes in neural connectivity in their relation to language development. Longitudinal resting-state functional data were acquired from a cohort of preschool children at age 5 and one year later, and changes in functional connectivity were correlated with language performance in sentence comprehension. For this, degree centrality, a voxel-based network measure, was used to assess age-related differences in connectivity at the whole-brain level. Increases in connectivity with age were found selectively in a cluster within the left posterior superior temporal gyrus and sulcus (STG/STS). In order to further specify the connection changes, a secondary seed-based functional connectivity analysis on this very cluster was performed. The correlations between resting-state functional connectivity (RSFC) and language performance revealed developmental effects with age and, importantly, also dependent on the advancement in sentence comprehension ability over time. In children with greater advancement in language abilities, the behavioral improvement was positively correlated with RSFC increase between left posterior STG/STS and other regions of the language network, i.e., left and right inferior frontal cortex. The age-related changes observed in this study provide evidence for alterations in the language network as language develops and demonstrates the viability of this approach for the investigation of normal and aberrant language development
Aluminum and Phosphorus Separation: Application to Preparation of Target from Brain Tissue for \u3csup\u3e26\u3c/sup\u3eAl Determination by Accelerator Mass Spectrometry
Acid digested brain containing 4 mg added 27Al was ashed at 1000°C to prepare an Al2O3 target for accelerator mass spectrometry (AMS) analysis of 26Al. A glass-like material usually resulted which was thought to be aluminum (Al) oxyphosphate. The separation of Al and phosphate was investigated. Al, but not phosphate, was bound by a cation exchange resin (AG 50-X8). Hydrofluoric acid eluted the Al from the resin. Removal of phosphate from acid digested brain by this method produced an amorphous material after ashing that was easier to recover from the porcelain crucible and had a higher AMS beam current. This procedure to separate Al from phosphate may have utility in other applications
Matrix-free calcium in isolated chromaffin vesicles
Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol
of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation
of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187.
During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the
decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the
vesicles. Intravesicular Mg2+ is not released from the vesicles by A23 187, as determined by atomic emission
spectroscopy. In the presence of N H Q , which causes the collapse of the secretory vesicle transmembrane
proton gradient (ApH), Ca2+ uptake decreases. Under these conditions A23 187-mediated influx of Ca2+
and efflux of H+ cease at Ca2+ concentrations of about 4 pM. Below this concentration Ca2+ is even released
from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix
free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4C1 we determined an intravesicular
pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 pM. From this value and the known
pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 pM was
calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles
determined in the presence of NH4C1. Calculation of the total Ca2+ present in the secretory vesicles gives
an apparent intravesicular Ca2+ concentration of 40 mM, which is a factor of lo4 higher than the free
intravesicular concentration of Ca2+. It can be concluded, therefore, that the concentration gradient of free
Ca2+ across the secretory vesicle membrane in the intact chromaffin cells is probably small, which implies
that less energy is required to accumulate and maintain Ca2+ within the vesicles than was previously
anticipated
Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting
The initial value problem for the Vlasov-Poisson system is by now well
understood in the case of an isolated system where, by definition, the
distribution function of the particles as well as the gravitational potential
vanish at spatial infinity. Here we start with homogeneous solutions, which
have a spatially constant, non-zero mass density and which describe the mass
distribution in a Newtonian model of the universe. These homogeneous states can
be constructed explicitly, and we consider deviations from such homogeneous
states, which then satisfy a modified version of the Vlasov-Poisson system. We
prove global existence and uniqueness of classical solutions to the
corresponding initial value problem for initial data which represent spatially
periodic deviations from homogeneous states.Comment: 23 pages, Latex, report #
Plasmon Evolution and Charge-Density Wave Suppression in Potassium Intercalated Tantalum Diselenide
We have investigated the influence of potassium intercalation on the
formation of the charge-density wave (CDW) instability in 2H-tantalum
diselenide by means of Electron Energy-Loss Spectroscopy and density functional
theory. Our observations are consistent with a filling of the conduction band
as indicated by a substantial decrease of the plasma frequency in experiment
and theory. In addition, elastic scattering clearly points to a destruction of
the CDW upon intercalation as can be seen by a vanishing of the corresponding
superstructures. This is accompanied by a new superstructure, which can be
attributed to the intercalated potassium. Based on the behavior of the c-axis
upon intercalation we argue in favor of interlayer-sites for the alkali-metal
and that the lattice remains in the 2H-modification
The Cosmic No-Hair Theorem and the Nonlinear Stability of Homogeneous Newtonian Cosmological Models
The validity of the cosmic no-hair theorem is investigated in the context of
Newtonian cosmology with a perfect fluid matter model and a positive
cosmological constant. It is shown that if the initial data for an expanding
cosmological model of this type is subjected to a small perturbation then the
corresponding solution exists globally in the future and the perturbation
decays in a way which can be described precisely. It is emphasized that no
linearization of the equations or special symmetry assumptions are needed. The
result can also be interpreted as a proof of the nonlinear stability of the
homogeneous models. In order to prove the theorem we write the general solution
as the sum of a homogeneous background and a perturbation. As a by-product of
the analysis it is found that there is an invariant sense in which an
inhomogeneous model can be regarded as a perturbation of a unique homogeneous
model. A method is given for associating uniquely to each Newtonian
cosmological model with compact spatial sections a spatially homogeneous model
which incorporates its large-scale dynamics. This procedure appears very
natural in the Newton-Cartan theory which we take as the starting point for
Newtonian cosmology.Comment: 16 pages, MPA-AR-94-
EUV ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization and electron energy-loss spectra
The ionization dynamics of pure He nanodroplets irradiated by EUV radiation
is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence
(VMI-PEPICO) spectroscopy. We present photoelectron energy spectra and angular
distributions measured in coincidence with the most abundant ions He+, He2+,
and He3+. Surprisingly, below the autoionization threshold of He droplets we
find indications for multiple excitation and subsequent ionization of the
droplets by a Penning-like process. At high photon energies we evidence
inelastic collisions of photoelectrons with the surrounding He atoms in the
droplets
- …