11,542 research outputs found

    Workshop on gravitational waves

    Get PDF
    In this article we summarise the proceedings of the Workshop on Gravitational Waves held during ICGC-95. In the first part we present the discussions on 3PN calculations (L. Blanchet, P. Jaranowski), black hole perturbation theory (M. Sasaki, J. Pullin), numerical relativity (E. Seidel), data analysis (B.S. Sathyaprakash), detection of gravitational waves from pulsars (S. Dhurandhar), and the limit on rotation of relativistic stars (J. Friedman). In the second part we briefly discuss the contributed papers which were mainly on detectors and detection techniques of gravitational waves.Comment: 18 pages, kluwer.sty, no figure

    Limit laws for k-coverage of paths by a Markov-Poisson-Boolean model

    Full text link
    Let P := {X_i,i >= 1} be a stationary Poisson point process in R^d, {C_i,i >= 1} be a sequence of i.i.d. random sets in R^d, and {Y_i^t; t \geq 0, i >= 1} be i.i.d. {0,1}-valued continuous time stationary Markov chains. We define the Markov-Poisson-Boolean model C_t := {Y_i^t(X_i + C_i), i >= 1}. C_t represents the coverage process at time t. We first obtain limit laws for k-coverage of an area at an arbitrary instant. We then obtain the limit laws for the k-coverage seen by a particle as it moves along a one-dimensional path.Comment: 1 figure. 24 Pages. Accepted at Stochastic Models. Theorems 6 and 7 corrected. Theorem 9 and Appendix adde

    Variations in the Cyclotron Resonant Scattering Features during 2011 outburst of 4U 0115+63

    Full text link
    We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low energy coverage allowed us to characterize the broadband continuum and detect the CRSFs. We find that the broadband continuum is adequately described by a combination of a low temperature (kT ~ 0.8 keV) blackbody and a power-law with high energy cutoff (Ecut ~ 5.4 keV) without the need for a broad Gaussian at ~ 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (< 3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at ~ 11 keV and ~ 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anti-correlation of line energy with luminosity could be due to modelling of these two independent line sets (~ 11 keV and ~ 15 keV) as a single CRSF.Comment: 12 pages, 8 figures (4 in colour), 6 tables. Accepted for publication in MNRAS. Typos corrected, Figure 8 changed and some changes to draf

    The Frenet Serret Description of Gyroscopic Precession

    Get PDF
    The phenomenon of gyroscopic precession is studied within the framework of Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to the congruence vorticity is highlighted with particular reference to the irrotational congruence admitted by the stationary, axisymmetric spacetime. General precession formulae are obtained for circular orbits with arbitrary constant angular speeds. By successive reduction, different types of precessions are derived for the Kerr - Schwarzschild - Minkowski spacetime family. The phenomenon is studied in the case of other interesting spacetimes, such as the De Sitter and G\"{o}del universes as well as the general stationary, cylindrical, vacuum spacetimes.Comment: 37 pages, Paper in Late

    First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories

    Full text link
    The first law of black hole mechanics is derived from the Einstein-Maxwell (EM) Lagrangian by comparing two infinitesimally nearby stationary black holes. With similar arguments, the first law of black hole mechanics in Einstein-Yang-Mills (EYM) theory is also derived.Comment: Modified version, major changes made in the introduction. 14 pages, no figur

    Homogeneous Relaxation at Strong Coupling from Gravity

    Full text link
    Homogeneous relaxation is a ubiquitous phenomenon in semiclassical kinetic theories where the quasiparticles are distributed uniformly in space, and the equilibration involves only their velocity distribution. For such solutions, the hydrodynamic variables remain constant. We construct asymptotically AdS solutions of Einstein's gravity dual to such processes at strong coupling, perturbatively in the amplitude expansion, where the expansion parameter is the ratio of the amplitude of the non-hydrodynamic shear-stress tensor to the pressure. At each order, we sum over all time derivatives through exact recursion relations. We argue that the metric has a regular future horizon, order by order in the amplitude expansion, provided the shear-stress tensor follows an equation of motion. At the linear order, this equation of motion implies that the metric perturbations are composed of zero wavelength quasinormal modes. Our method allows us to calculate the non-linear corrections to this equation perturbatively in the amplitude expansion. We thus derive a special case of our previous conjecture on the regularity condition on the boundary stress tensor that endows the bulk metric with a regular future horizon, and also refine it further. We also propose a new outlook for heavy-ion phenomenology at RHIC and ALICE.Comment: 60 pages, a section titled "Outlook for RHIC and ALICE" has been added, accepted for publication in Physical Review

    Application of A Distributed Nucleus Approximation In Grid Based Minimization of the Kohn-Sham Energy Functional

    Full text link
    In the distributed nucleus approximation we represent the singular nucleus as smeared over a smallportion of a Cartesian grid. Delocalizing the nucleus allows us to solve the Poisson equation for theoverall electrostatic potential using a linear scaling multigrid algorithm.This work is done in the context of minimizing the Kohn-Sham energy functionaldirectly in real space with a multiscale approach. The efficacy of the approximation is illustrated bylocating the ground state density of simple one electron atoms and moleculesand more complicated multiorbital systems.Comment: Submitted to JCP (July 1, 1995 Issue), latex, 27pages, 2figure
    corecore