211 research outputs found

    Mechanical and fracture performance of carbon fibre reinforced composites with nanoparticle modified matrices

    Get PDF
    The microstructure and fracture performance of carbon-fibre reinforced polymer (CFRP) composites with an epoxy resin cured with an anhydride hardener containing silica nanoparticles and/or polysiloxane core-shell rubber (CSR) particles was investigated in the current work. Double cantilever beam tests were performed in order to evaluate the fracture energy of the CFRP composites, while the single edge notched bend (SENB) specimen was employed to evaluate the fracture energy of the bulk polymers. Tests were conducted at room temperature and at -80°C. The transferability of the toughness from the bulk polymers to the fibre-composite systems is discussed, with an emphasis on elucidating the toughening mechanism

    Adhesion Improvement of Thermoplastics-Based Composites by Atmospheric Plasma and UV Treatments

    Get PDF
    The present work is concerned with adhesive bonding of thermoplastic composites used in general aerospace applications, including polyphenylene sulfide (PPS), polyetherimide (PEI) and polyetheretherketone (PEEK) carbon fibre composites. Three different surface treatments have been applied to the PEEK, PPS and PEI-based composites in order to enhance the adhesion: atmospheric plasma, ultraviolet radiation (UV) and isopropanol wiping as a control. Water contact angles and free surface energies were measured following the standard experimental procedure based on the employment of three different liquid droplets. Infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) were subsequently performed to characterize the surface chemistry of the samples after treatment. The single lap joints were manufactured and bonded by an Aerospace grade epoxy-based film adhesive originally developed for use on metals but with the ability to bond treated thermoplastics to good strength (supplied by Henkel Ireland). Quasi-static (QS) tests were conducted. The lap shear strength was evaluated, and the failure mechanisms of the different joints were examined for the range of surface treatments considered. It was found that the performances of the PEEK and PPS joints were considerably improved by the plasma and UV treatments resulting in cohesive and delamination failures, while PEI was unaffected by the plasma and UV treatments and performed very well throughout

    Milking Characteristics of Istrian and Littoral Dinaric Donkey Breeds

    Get PDF
    Istrian and Littoral Dinaric donkey are autochthonous breeds which habitat primarily in the Mediterranean part of Croatia. During the second half of the 20th century they have lost primary function as working animals, which led to breeds suppression. Nowadays these two breeds are in the status of endangered ones. One of the possibilities for their economic re-affirmation is launching the program for production and processing donkey’s milk. The aim of the study was to determine the possibility of milk production of Istrian and Littoral Dinaric jennies in terms of quantity and chemical composition. Istrian jennies produce 745.4 mL/milking while Littoral Dinaric produce 317.8 mL/milking. Milk form Littoral Dinaric jennies contained a significantly higher proportion of milk fat and proteins. There were no significant differences in the content of lactose, dry matter, number of somatic cells and microorganisms in milk between these two breeds. Considering the potential for milk production and milk quality, we believe that both breeds are suitable for integration in the programs for milk production, thus enabling for both population to be economically sustainable. It is necessary to develop production technology and markets, with special emphasis considering quality of donkey milk and safety of consumers

    Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy

    Get PDF
    Impairment of the autophagy-lysosome pathway (ALP) is implicated with the changes in α-synuclein and mitochondrial dysfunction observed in Parkinson's disease (PD). Damaged mitochondria accumulate PINK1, which then recruits parkin, resultingin ubiquitination of mitochondrial proteins. These can then be bound by the autophagic proteins p62/SQSTM1 and LC3, resulting in degradation of mitochondria by mitophagy. Mutations in PINK1 and parkin genes are a cause of familial PD. We found a significant increase in the expression of p62/SQSTM1 mRNA and protein following mitophagy induction in human neuroblastoma SH-SY5Y cells. p62 protein not only accumulated on mitochondria, but was also greatly increased in the cytosol. Increased p62/SQSMT1 expression was prevented in PINK1 knock down (KD) cells, suggesting increased p62 expression was a consequence of mitophagy induction. The transcription factors Nrf2 and TFEB, which play roles in mitochondrial and lysosomal biogenesis, respectively, can regulate p62/SQSMT1. We report that both Nrf2 and TFEB translocate to the nucleus following mitophagy induction and that the increase in p62 mRNA levels was significantly impaired in cells with Nrf2 or TFEB KD.. TFEB translocation also increased expression of itself and lysosomal proteins such as glucocerebrosidase and cathepsin D following mitophagy induction. We also report that cells with increased TFEB protein have significantly higher PGC-1α mRNA levels, a regulator of mitochondrial biogenesis, resulting in increased mitochondrial content. Our data suggests that TFEB is activated following mitophagy to maintain ALP and mitochondrial biogenesis. Therefore strategies to increase TFEB may improve both the clearance of α-synuclein and mitochondrial dysfunction in PD. This article is protected by copyright. All rights reserved

    Dynamic adsorption characteristics of thin layered activated charcoal materials used in chemical protective overgarments

    Get PDF
    The efficiency of a thin layered activated charcoal material used in chemical protective overgarments has been evaluated. The study has been conducted with the aim to obtain protective materials with best characteristics considering resistance to benzene effect under dynamic conditions and to create a new filtration protection device. In order to evaluate dynamic adsorption characteristics of thin layered sorption materials, sophisticated dynamic gas chromatography method is used. The curves of benzene penetration are determined for sandwich materials, and sorption layers used in filtrating protective clothing shows that thin layered carbon sorption materials (type M00) have good protective properties as compared to other similar materials. The findings will help to create conditions for developing a functional model for producing a new protective overgarment in the near future

    DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites

    Get PDF
    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development

    Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery

    Get PDF
    Mitochondrial Rho (Miro) GTPases localize to the outer mitochondrial membrane and are essential machinery for the regulated trafficking of mitochondria to defined subcellular locations. However, their sub-mitochondrial localization and relationship with other critical mitochondrial complexes remains poorly understood. Here, using super-resolution fluorescence microscopy, we report that Miro proteins form nanometer-sized clusters along the mitochondrial outer membrane in association with the Mitochondrial Contact Site and Cristae Organizing System (MICOS). Using knockout mouse embryonic fibroblasts we show that Miro1 and Miro2 are required for normal mitochondrial cristae architecture and Endoplasmic Reticulum-Mitochondria Contacts Sites (ERMCS). Further, we show that Miro couples MICOS to TRAK motor protein adaptors to ensure the concerted transport of the two mitochondrial membranes and the correct distribution of cristae on the mitochondrial membrane. The Miro nanoscale organization, association with MICOS complex and regulation of ERMCS reveal new levels of control of the Miro GTPases on mitochondrial functionality
    • …
    corecore