82 research outputs found

    Quantum Vortex in a Vectorial Bose-Einstein Condensate

    Full text link
    Quantum vortices in the multi-component Bose-Einstein condensation (BEC) are investigated theoretically. It is found that three kinds of the vortex configurations are possible and their physical properties are discussed in details, including the density distribution and the spin texture. By using the Bogoliubov theory extended to the three component BEC, the collective modes for these vortices are evaluated. The local vortex stability for these vortices are examined in light of the existence of the negative eigenvalue, yielding a narrow magnetization window for the local intrinsic stable region where the multi-components work together to stabilize a vortex in a self-organized way.Comment: 8 pages, 14 eps figure

    Spin textures in slowly rotating Bose-Einstein Condensates

    Full text link
    Slowly rotating spin-1 Bose-Einstein condensates are studied through a variational approach based upon lowest Landau level calculus. The author finds that in a gas with ferromagnetic interactions, such as 87^{87}Rb, angular momentum is predominantly carried by clusters of two different types of skyrmion textures in the spin-vector order parameter. Conversely, in a gas with antiferromagnetic interactions, such as 23^{23}Na, angular momentum is carried by π\pi-disclinations in the nematic order parameter which arises from spin fluctuations. For experimentally relevant parameters, the cores of these π\pi-disclinations are ferromagnetic, and can be imaged with polarized light.Comment: 14 pages, 12 low resolution bitmapped figures, RevTeX4. High resolution figures available from author. Suplementary movies available from autho

    Excitation spectrum in a cylindrical Bose-Einstein gas

    Full text link
    Whole excitation spectrum is calculated within the Popov approximation of the Bogoliubov theory for a cylindrical symmetric Bose-Einstein gas trapped radially by a harmonic potential. The full dispersion relation and its temperature dependence of the zero sound mode propagating along the axial direction are evaluated in a self-consistent manner. The sound velocity is shown to depend not only on the peak density, but also on the axial area density. Recent sound velocity experiment on Na atom gas is discussed in light of the present theory.Comment: 4 pages, 5 eps figure

    Collective Oscillations of Vortex Lattices in Rotating Bose-Einstein Condensates

    Full text link
    The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The totally symmetric subset of these modes includes the transverse shear, common longitudinal, and differential longitudinal modes. We also solve the time-dependent Gross-Pitaevskii (TDGP) equation to simulate the actual JILA experiment, obtaining the Tkachenko mode and identifying a pair of breathing modes. Combining both the BdG and TDGP approaches allows one to unambiguously identify every observed mode.Comment: 5 pages, 4 figure

    Structure and Stability of Vortices in Dilute Bose-Einstein Condensates at Ultralow Temperatures

    Full text link
    We compute the structure of a quantized vortex line in a harmonically trapped dilute atomic Bose-Einstein condensate using the Popov version of the Hartree-Fock-Bogoliubov mean-field theory. The vortex is shown to be (meta)stable in a nonrotating trap even in the zero-temperature limit, thus confirming that weak particle interactions induce the condensed gas a fundamental property characterizing ``classical'' superfluids. We present the structure of the vortex at ultralow temperatures and discuss the crucial effect of the thermal gas component to its energetic stability.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Mermin-Ho vortex in ferromagnetic spinor Bose-Einstein condensates

    Full text link
    The Mermin-Ho and Anderson-Toulouse coreless non-singular vortices are demonstrated to be thermodynamically stable in ferromagnetic spinor Bose-Einstein condensates with the hyperfine state F=1. The phase diagram is established in a plane of the rotation drive vs the total magnetization by comparing the energies for other competing non-axis-symmetric or singular vortices. Their stability is also checked by evaluating collective modes.Comment: 4 pages, 4 figure

    Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein Condensates

    Full text link
    We measure spin mixing of F=1 and F=2 spinor condensates of 87Rb atoms confined in an optical trap. We determine the spin mixing time to be typically less than 600 ms and observe spin population oscillations. The equilibrium spin configuration in the F=1 manifold is measured for different magnetic fields and found to show ferromagnetic behavior for low field gradients. An F=2 condensate is created by microwave excitation from F=1 manifold, and this spin-2 condensate is observed to decay exponentially with time constant 250 ms. Despite the short lifetime in the F=2 manifold, spin mixing of the condensate is observed within 50 ms.Comment: 4 pages, 6 figure

    Stability of vortices in rotating taps: a 3d analysis

    Full text link
    We study the stability of vortex-lines in trapped dilute gases subject to rotation. We solve numerically both the Gross-Pitaevskii and the Bogoliubov equations for a 3d condensate in spherically and cilyndrically symmetric stationary traps, from small to very large nonlinearities. In the stationary case it is found that the vortex states with unit and m=2m=2 charge are energetically unstable. In the rotating trap it is found that this energetic instability may only be suppressed for the m=1m=1 vortex-line, and that the multicharged vortices are never a local minimum of the energy functional, which implies that the absolute minimum of the energy is not an eigenstate of the LzL_z operator, when the angular speed is above a certain value, Ω>Ω2\Omega > \Omega_2.Comment: 10 pages, 7 figures in EPS forma

    Double Phase Transitions in Magnetized Spinor Bose-Einstein Condensation

    Full text link
    It is investigated theoretically that magnetized Bose-Einstein condensation (BEC) with the internal (spin) degrees of freedom exhibits a rich variety of phase transitions, depending on the sign of the interaction in the spin channel. In the antiferromagnetic interaction case there exist always double BEC transitions from single component BEC to multiple component BEC. In the ferromagnetic case BEC becomes always unstable at a lower temperature, leading to a phase separation. The detailed phase diagram for the temperature vs the polarization, the spatial spin structure, the distribution of non-condensates and the excitation spectrum are examined for the harmonically trapped systems.Comment: 6 pages, 7 figures. Submitted to J. Phys. Soc. Jp

    Vortex stabilization in Bose-Einstein condensate of alkali atom gas

    Full text link
    A quantized vortex in the Bose-Einstein condensation (BEC), which is known to be unstable intrinsically, is demonstrated theoretically to be stabilized by the finite temperature effect. The mean-field calculation of Popov approximation within the Bogoliubov theory is employed, giving rise to a self-consistent solution for BEC confined by a harmonic potential. Physical origin of this vortex stabilization is investigated. An equivalent effect is also proved to be induced by an additional pinning potential at the vortex center produced by a focused laser beam even at the lowest temperature. The self-consistent solutions give detailed properties of a stable vortex, such as the spatial profiles of the condensate and non-condensate, the particle current density around the core, the whole excitation spectrum, and their temperature dependences.Comment: 11 pages, 17 eps figure
    • …
    corecore