3,918 research outputs found

    Global regularity for 2d water waves with surface tension

    Full text link
    We consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of our analysis is to develop a sufficiently robust method, based on energy estimates and dispersive analysis, which allows us to deal with strong singularities arising from time resonances in the applications of the normal form method and nonlinear scattering. As a result, we are able to consider a suitable class of perturbations with finite energy, but no other momentum conditions. Part of our analysis relies on a new treatment of the Dirichlet-Neumann operator in dimension two which is of independent interest. As a consequence, the results in this paper are self-contained.Comment: 100 pages. References update

    On the local extension of Killing vector-fields in Ricci flat manifolds

    Full text link
    We revisit the problem of extension of Killing vector-fields in smooth Ricci flat manifolds, and its relevance to the black hole rigidity problem

    The Euler--Maxwell system for electrons: global solutions in 2D2D

    Full text link
    A basic model for describing plasma dynamics is given by the Euler-Maxwell system, in which compressible ion and electron fluids interact with their own self-consistent electromagnetic field. In this paper we consider the "one-fluid" Euler--Maxwell model for electrons, in 2 spatial dimensions, and prove global stability of a constant neutral background.Comment: Revised versio
    corecore