1,361 research outputs found

    New Approach to Cosmological Fluctuation using the Background Field Method and CMB Power Spectrum

    Full text link
    A new field theory formulation is presented for the analysis of the CMB power spectrum distribution in the cosmology. The background-field formalism is fully used. Stimulated by the recent idea of the {\it emergent} gravity, the gravitational (metric) field g_\mn is not taken as the quantum-field, but as the background field. The statistical fluctuation effect of the metric field is taken into account by the path (hyper-surface)-integral over the space-time. Using a simple scalar model on the curved (dS4_4) space-time, we explain the above things with the following additional points: 1) Clear separate treatment of the classical effect, the statistical effect and the quantum effect; 2) The cosmological fluctuation comes not from the 'quantum' gravity but from the unkown 'microscopic' movement; 3) IR parameter (\ell) is introduced for the time axis as the periodicity. Time reversal(Z2_2)-symmetry is introduced in order to treat the problem separately with respect to the Z2_2 parity. This procedure much helps both UV and IR regularization to work well.Comment: 6 pages, 5 figures, Presentation at APPC12(Makuhari,Chiba,Japan,2013.7.14-19), JPS Conference Proceedings (in press

    Casimir Energy of the Universe and New Regularization of Higher Dimensional Quantum Field Theories

    Full text link
    Casimir energy is calculated for the 5D electromagnetism and 5D scalar theory in the {\it warped} geometry. It is compared with the flat case. A new regularization, called {\it sphere lattice regularization}, is taken. In the integration over the 5D space, we introduce two boundary curves (IR-surface and UV-surface) based on the {\it minimal area principle}. It is a {\it direct} realization of the geometrical approach to the {\it renormalization group}. The regularized configuration is {\it closed-string like}. We do {\it not} take the KK-expansion approach. Instead, the position/momentum propagator is exploited, combined with the {\it heat-kernel method}. All expressions are closed-form (not KK-expanded form). The {\it generalized} P/M propagators are introduced. We numerically evaluate \La(4D UV-cutoff), \om(5D bulk curvature, warp parameter) and TT(extra space IR parameter) dependence of the Casimir energy. We present two {\it new ideas} in order to define the 5D QFT: 1) the summation (integral) region over the 5D space is {\it restricted} by two minimal surfaces (IR-surface, UV-surface) ; or 2) we introduce a {\it weight function} and require the dominant contribution, in the summation, is given by the {\it minimal surface}. Based on these, 5D Casimir energy is {\it finitely} obtained after the {\it proper renormalization procedure.} The {\it warp parameter} \om suffers from the {\it renormalization effect}. The IR parameter TT does not. We examine the meaning of the weight function and finally reach a {\it new definition} of the Casimir energy where {\it the 4D momenta(or coordinates) are quantized} with the extra coordinate as the Euclidean time (inverse temperature). We examine the cosmological constant problem and present an answer at the end. Dirac's large number naturally appears.Comment: 13 paes, 8 figures, proceedings of 1st Mediterranean Conf. on CQ

    Geometric Approach to Quantum Statistical Mechanics and Application to Casimir Energy and Friction Properties

    Full text link
    A geometric approach to general quantum statistical systems (including the harmonic oscillator) is presented. It is applied to Casimir energy and the dissipative system with friction. We regard the (N+1)-dimensional Euclidean {\it coordinate} system (Xi^i,τ\tau) as the quantum statistical system of N quantum (statistical) variables (Xi^i) and one {\it Euclidean time} variable (τ\tau). Introducing paths (lines or hypersurfaces) in this space (Xi^i,τ\tau), we adopt the path-integral method to quantize the mechanical system. This is a new view of (statistical) quantization of the {\it mechanical} system. The system Hamiltonian appears as the {\it area}. We show quantization is realized by the {\it minimal area principle} in the present geometric approach. When we take a {\it line} as the path, the path-integral expressions of the free energy are shown to be the ordinary ones (such as N harmonic oscillators) or their simple variation. When we take a {\it hyper-surface} as the path, the system Hamiltonian is given by the {\it area} of the {\it hyper-surface} which is defined as a {\it closed-string configuration} in the bulk space. In this case, the system becomes a O(N) non-linear model. We show the recently-proposed 5 dimensional Casimir energy (ArXiv:0801.3064,0812.1263) is valid. We apply this approach to the visco-elastic system, and present a new method using the path-integral for the calculation of the dissipative properties.Comment: 20 pages, 8 figures, Proceedings of ICFS2010 (2010.9.13-18, Ise-Shima, Mie, Japan

    Gauge Theory of Composite Fermions: Particle-Flux Separation in Quantum Hall Systems

    Full text link
    Fractionalization phenomenon of electrons in quantum Hall states is studied in terms of U(1) gauge theory. We focus on the Chern-Simons(CS) fermion description of the quantum Hall effect(QHE) at the filling factor ν=p/(2pq±1)\nu=p/(2pq\pm 1), and show that the successful composite-fermions(CF) theory of Jain acquires a solid theoretical basis, which we call particle-flux separation(PFS). PFS can be studied efficiently by a gauge theory and characterized as a deconfinement phenomenon in the corresponding gauge dynamics. The PFS takes place at low temperatures, TTPFST \leq T_{\rm PFS}, where each electron or CS fermion splinters off into two quasiparticles, a fermionic chargeon and a bosonic fluxon. The chargeon is nothing but Jain's CF, and the fluxon carries 2q2q units of CS fluxes. At sufficiently low temperatures TTBC(<TPFS)T \leq T_{\rm BC} (< T_{\rm PFS}), fluxons Bose-condense uniformly and (partly) cancel the external magnetic field, producing the correlation holes. This partial cancellation validates the mean-field theory in Jain's CF approach. FQHE takes place at T<TBCT < T_{\rm BC} as a joint effect of (i) integer QHE of chargeons under the residual field ΔB\Delta B and (ii) Bose condensation of fluxons. We calculate the phase-transition temperature TPFST_{\rm PFS} and the CF mass. PFS is a counterpart of the charge-spin separation in the t-J model of high-TcT_{\rm c} cuprates in which each electron dissociates into holon and spinon. Quasiexcitations and resistivity in the PFS state are also studied. The resistivity is just the sum of contributions of chargeons and fluxons, and ρxx\rho_{xx} changes its behavior at T=TPFST = T_{\rm PFS}, reflecting the change of quasiparticles from chargeons and fluxons at T<TPFST < T_{\rm PFS} to electrons at TPFS<TT_{\rm PFS} < T.Comment: 18 pages, 7 figure

    Some Properties of Domain Wall Solution in the Randall-Sundrum Model

    Get PDF
    Properties of the domain wall (kink) solution in the 5 dimensional Randall-Sundrum model are examined both {\it analytically} and {\it numerically}. The configuration is derived by the bulk Higgs mechanism. We focus on 1) the convergence property of the solution, 2) the stableness of the solution, 3) the non-singular property of the Riemann curvature, 4) the behaviours of the warp factor and the Higgs field. It is found that the bulk curvature changes the sign around the surface of the wall. We also present some {\it exact} solutions for two simple cases: a) the no potential case, b) the cosmological term dominated case. Both solutions have the (naked) curvature singularity. We can regard the domain wall solution as a singularity resolution of the exact solutions.Comment: Typographical error correction for publication. 16 pages, 4 figure

    Wall and Anti-Wall in the Randall-Sundrum Model and A New Infrared Regularization

    Get PDF
    An approach to find the field equation solution of the Randall-Sundrum model with the S1/Z2S^1/Z_2 extra axis is presented. We closely examine the infrared singularity. The vacuum is set by the 5 dimensional Higgs field. Both the domain-wall and the anti-domain-wall naturally appear, at the {\it ends} of the extra compact axis, by taking a {\it new infrared regularization}. The stability is guaranteed from the outset by the kink boundary condition. A {\it continuous} (infrared-)regularized solution, which is a truncated {\it Fourier series} of a {\it discontinuous} solution, is utilized.The ultraviolet-infrared relation appears in the regularized solution.Comment: 36 pages, 29 eps figure file

    CP Violation from a Higher Dimensional Model

    Get PDF
    It is shown that Randall-Sundrum model has the EDM term which violates the CP-symmetry. The comparison with the case of Kaluza-Klein theory is done. The chiral property, localization, anomaly phenomena are examined. We evaluate the bulk quantum effect using the method of the induced effective action. This is a new origin of the CP-violation.Comment: 15pages, Proc. of Int. Workshop on "Neutrino Masses and Mixings"(Dec.17-19,2006,Univ.of Shizuoka,Japan

    Conformal Anomaly in 4D Gravity-Matter Theories Non-minimally Coupled with Dilaton

    Get PDF
    The conformal anomaly for 4D gravity-matter theories, which are non-minimally coupled with the dilaton, is systematically studied. Special care is taken for: rescaling of fields, treatment of total derivatives, hermiticity of the system operator and choice of measure. Scalar, spinor and vector fields are taken as the matter quantum fields and their explicit conformal anomalies in the gravity-dilaton background are found. The cohomology analysis is done and some new conformal invariants and trivial terms, involving the dilaton, are obtained. The symmetry of the constant shift of the dilaton field plays an important role. The general structure of the conformal anomaly is examined. It is shown that the dilaton affects the conformal anomaly characteristically for each case: 1)[Scalar] The dilaton changes the conformal anomaly only by a new conformal invariant, I4I_4; 2)[Spinor] The dilaton does {\it not} change the conformal anomaly; 3)[Vector] The dilaton changes the conformal anomaly by three new (generalized) conformal invariants, I4,I2,I1I_4,I_2,I_{1}. We present some new anomaly formulae which are useful for practical calculations. Finally, the anomaly induced action is calculated for the dilatonic Wess-Zumino model. We point out that the coefficient of the total derivative term in the conformal anomaly for the 2D scalar coupled to a dilaton is ambiguous. This resolves the disagreement between calculations in refs.\cite{ENO,NO,SI97,KLV} and the result of Hawking-Bousso\cite{BH}.Comment: 37 pages, Latex, No figur

    The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity

    Get PDF
    The finiteness requirement for Euclidean Einstein gravity is shown to be so stringent that only the flat metric is allowed. We examine counterterms in 4D and 6D Ricci-flat manifolds from general invariance arguments.Comment: 15 pages, Introduction is improved, many figures(eps

    Fluctuation effects of gauge fields in the slave-boson t-J model

    Full text link
    We present a quantitative study of the charge-spin separation(CSS) phenomenon in a U(1) gauge theory of the t-J model of high-Tc superconductures. We calculate the critical temperature of confinement-deconfinement phase transition below which the CSS takes place.Comment: Latex, 9 pages, 3 figure
    corecore